机器学习能否开启高频交易的新视角?

G. Ibikunle, B. Moews, K. Rzayev
{"title":"机器学习能否开启高频交易的新视角?","authors":"G. Ibikunle, B. Moews, K. Rzayev","doi":"arxiv-2405.08101","DOIUrl":null,"url":null,"abstract":"We design and train machine learning models to capture the nonlinear\ninteractions between financial market dynamics and high-frequency trading (HFT)\nactivity. In doing so, we introduce new metrics to identify liquidity-demanding\nand -supplying HFT strategies. Both types of HFT strategies increase activity\nin response to information events and decrease it when trading speed is\nrestricted, with liquidity-supplying strategies demonstrating greater\nresponsiveness. Liquidity-demanding HFT is positively linked with latency\narbitrage opportunities, whereas liquidity-supplying HFT is negatively related,\naligning with theoretical expectations. Our metrics have implications for\nunderstanding the information production process in financial markets.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"1198 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can machine learning unlock new insights into high-frequency trading?\",\"authors\":\"G. Ibikunle, B. Moews, K. Rzayev\",\"doi\":\"arxiv-2405.08101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We design and train machine learning models to capture the nonlinear\\ninteractions between financial market dynamics and high-frequency trading (HFT)\\nactivity. In doing so, we introduce new metrics to identify liquidity-demanding\\nand -supplying HFT strategies. Both types of HFT strategies increase activity\\nin response to information events and decrease it when trading speed is\\nrestricted, with liquidity-supplying strategies demonstrating greater\\nresponsiveness. Liquidity-demanding HFT is positively linked with latency\\narbitrage opportunities, whereas liquidity-supplying HFT is negatively related,\\naligning with theoretical expectations. Our metrics have implications for\\nunderstanding the information production process in financial markets.\",\"PeriodicalId\":501294,\"journal\":{\"name\":\"arXiv - QuantFin - Computational Finance\",\"volume\":\"1198 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Computational Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.08101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.08101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们设计并训练机器学习模型,以捕捉金融市场动态与高频交易(HFT)活动之间的非线性互动。在此过程中,我们引入了新的指标来识别流动性需求型和供应型 HFT 策略。两种类型的 HFT 策略都会在信息事件发生时增加活动,而在交易速度受限时减少活动,其中流动性供应型策略表现出更强的反应能力。流动性需求型 HFT 与延迟套利机会呈正相关,而流动性供应型 HFT 则呈负相关,这与理论预期一致。我们的度量指标对理解金融市场的信息生产过程具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Can machine learning unlock new insights into high-frequency trading?
We design and train machine learning models to capture the nonlinear interactions between financial market dynamics and high-frequency trading (HFT) activity. In doing so, we introduce new metrics to identify liquidity-demanding and -supplying HFT strategies. Both types of HFT strategies increase activity in response to information events and decrease it when trading speed is restricted, with liquidity-supplying strategies demonstrating greater responsiveness. Liquidity-demanding HFT is positively linked with latency arbitrage opportunities, whereas liquidity-supplying HFT is negatively related, aligning with theoretical expectations. Our metrics have implications for understanding the information production process in financial markets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A deep primal-dual BSDE method for optimal stopping problems Robust financial calibration: a Bayesian approach for neural SDEs MANA-Net: Mitigating Aggregated Sentiment Homogenization with News Weighting for Enhanced Market Prediction QuantFactor REINFORCE: Mining Steady Formulaic Alpha Factors with Variance-bounded REINFORCE Signature of maturity in cryptocurrency volatility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1