Katharina Loibl, Timo Leuders, Inga Glogger-Frey, Nikol Rummel
{"title":"CID:综合教学设计认知分析框架","authors":"Katharina Loibl, Timo Leuders, Inga Glogger-Frey, Nikol Rummel","doi":"10.1007/s11251-024-09665-9","DOIUrl":null,"url":null,"abstract":"<p>Instruction often spans multiple phases (e.g., phases of discovery learning, instructional explanations, practice) with different learning goals and different pedagogies. For any combination of multiple phases, we use the term composite instructional design (CID). To understand the mechanisms underlying composite instructional designs, we propose a framework that links three levels (knowledge, learning, instruction) across multiple phases: Its core element is the specification of learning mechanisms that explain how intermediate knowledge (i.e., the knowledge state between instructional phases) generated by the learning processes of one phase impacts the learning processes of a following phase. The CID framework serves as a basis for conducting research on composite instructional designs based on a cognitive analysis, which we exemplify by discussing existing research in light of the framework. We discuss how the CID framework supports understanding of the effects of composite instructional designs beyond the individual effects of the single phases through an analysis of effects on intermediate knowledge (i.e., the knowledge state resulting from a first instructional phase) and how it alters the learning processes initiated by the instructional design of a second phase. We also aim to illustrate how CID can help resolve contradictory findings of prior studies (e.g., studies that did or did not find beneficial effects of problem solving prior to instruction). Methodologically, we highlight the challenge of altering one learning mechanism at a time as experimental variations on the instructional design level often affect multiple learning processes across phases.</p>","PeriodicalId":47990,"journal":{"name":"Instructional Science","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CID: a framework for the cognitive analysis of composite instructional designs\",\"authors\":\"Katharina Loibl, Timo Leuders, Inga Glogger-Frey, Nikol Rummel\",\"doi\":\"10.1007/s11251-024-09665-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Instruction often spans multiple phases (e.g., phases of discovery learning, instructional explanations, practice) with different learning goals and different pedagogies. For any combination of multiple phases, we use the term composite instructional design (CID). To understand the mechanisms underlying composite instructional designs, we propose a framework that links three levels (knowledge, learning, instruction) across multiple phases: Its core element is the specification of learning mechanisms that explain how intermediate knowledge (i.e., the knowledge state between instructional phases) generated by the learning processes of one phase impacts the learning processes of a following phase. The CID framework serves as a basis for conducting research on composite instructional designs based on a cognitive analysis, which we exemplify by discussing existing research in light of the framework. We discuss how the CID framework supports understanding of the effects of composite instructional designs beyond the individual effects of the single phases through an analysis of effects on intermediate knowledge (i.e., the knowledge state resulting from a first instructional phase) and how it alters the learning processes initiated by the instructional design of a second phase. We also aim to illustrate how CID can help resolve contradictory findings of prior studies (e.g., studies that did or did not find beneficial effects of problem solving prior to instruction). Methodologically, we highlight the challenge of altering one learning mechanism at a time as experimental variations on the instructional design level often affect multiple learning processes across phases.</p>\",\"PeriodicalId\":47990,\"journal\":{\"name\":\"Instructional Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Instructional Science\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1007/s11251-024-09665-9\",\"RegionNum\":3,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Instructional Science","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1007/s11251-024-09665-9","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
CID: a framework for the cognitive analysis of composite instructional designs
Instruction often spans multiple phases (e.g., phases of discovery learning, instructional explanations, practice) with different learning goals and different pedagogies. For any combination of multiple phases, we use the term composite instructional design (CID). To understand the mechanisms underlying composite instructional designs, we propose a framework that links three levels (knowledge, learning, instruction) across multiple phases: Its core element is the specification of learning mechanisms that explain how intermediate knowledge (i.e., the knowledge state between instructional phases) generated by the learning processes of one phase impacts the learning processes of a following phase. The CID framework serves as a basis for conducting research on composite instructional designs based on a cognitive analysis, which we exemplify by discussing existing research in light of the framework. We discuss how the CID framework supports understanding of the effects of composite instructional designs beyond the individual effects of the single phases through an analysis of effects on intermediate knowledge (i.e., the knowledge state resulting from a first instructional phase) and how it alters the learning processes initiated by the instructional design of a second phase. We also aim to illustrate how CID can help resolve contradictory findings of prior studies (e.g., studies that did or did not find beneficial effects of problem solving prior to instruction). Methodologically, we highlight the challenge of altering one learning mechanism at a time as experimental variations on the instructional design level often affect multiple learning processes across phases.
期刊介绍:
Instructional Science, An International Journal of the Learning Sciences, promotes a deeper understanding of the nature, theory, and practice of learning and of environments in which learning occurs. The journal’s conception of learning, as well as of instruction, is broad, recognizing that there are many ways to stimulate and support learning. The journal encourages submission of research papers, covering a variety of perspectives from the learning sciences and learning, by people of all ages, in all areas of the curriculum, in technologically rich or lean environments, and in informal and formal learning contexts. Emphasizing reports of original empirical research, the journal provides space for full and detailed reporting of major studies. Regardless of the topic, papers published in the journal all make an explicit contribution to the science of learning and instruction by drawing out the implications for the design and implementation of learning environments. We particularly encourage the submission of papers that highlight the interaction between learning processes and learning environments, focus on meaningful learning, and recognize the role of context. Papers are characterized by methodological variety that ranges, for example, from experimental studies in laboratory settings, to qualitative studies, to design-based research in authentic learning settings. The Editors will occasionally invite experts to write a review article on an important topic in the field. When review articles are considered for publication, they must deal with central issues in the domain of learning and learning environments. The journal accepts replication studies. Such a study should replicate an important and seminal finding in the field, from a study which was originally conducted by a different research group. Most years, Instructional Science publishes a guest-edited thematic special issue on a topic central to the journal''s scope. Proposals for special issues can be sent to the Editor-in-Chief. Proposals will be discussed in Spring and Fall of each year, and the proposers will be notified afterwards. To be considered for the Spring and Fall discussion, proposals should be sent to the Editor-in-Chief by March 1 and October 1, respectively. Please note that articles that are submitted for a special issue will follow the same review process as regular articles.