{"title":"彩虹三角形的最小度数条件","authors":"Victor Falgas-Ravry, Klas Markström, Eero Räty","doi":"10.1002/jgt.23109","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n \n <mo>≔</mo>\n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>G</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>G</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>G</mi>\n \n <mn>3</mn>\n </msub>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\bf{G}}:= ({G}_{1},{G}_{2},{G}_{3})$</annotation>\n </semantics></math> be a triple of graphs on a common vertex set <span></span><math>\n <semantics>\n <mrow>\n <mi>V</mi>\n </mrow>\n <annotation> $V$</annotation>\n </semantics></math> of size <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>. A rainbow triangle in <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> ${\\bf{G}}$</annotation>\n </semantics></math> is a triple of edges <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <msub>\n <mi>e</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>e</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>e</mi>\n \n <mn>3</mn>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $({e}_{1},{e}_{2},{e}_{3})$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>e</mi>\n \n <mi>i</mi>\n </msub>\n \n <mo>∈</mo>\n \n <msub>\n <mi>G</mi>\n \n <mi>i</mi>\n </msub>\n </mrow>\n <annotation> ${e}_{i}\\in {G}_{i}$</annotation>\n </semantics></math> for each <span></span><math>\n <semantics>\n <mrow>\n <mi>i</mi>\n </mrow>\n <annotation> $i$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>{</mo>\n <mrow>\n <msub>\n <mi>e</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>e</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>e</mi>\n \n <mn>3</mn>\n </msub>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation> $\\{{e}_{1},{e}_{2},{e}_{3}\\}$</annotation>\n </semantics></math> forming a triangle in <span></span><math>\n <semantics>\n <mrow>\n <mi>V</mi>\n </mrow>\n <annotation> $V$</annotation>\n </semantics></math>. In this paper we consider the following question: what triples of minimum-degree conditions <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>δ</mi>\n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>G</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>)</mo>\n </mrow>\n \n <mo>,</mo>\n \n <mi>δ</mi>\n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>G</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo>)</mo>\n </mrow>\n \n <mo>,</mo>\n \n <mi>δ</mi>\n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>G</mi>\n \n <mn>3</mn>\n </msub>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(\\delta ({G}_{1}),\\delta ({G}_{2}),\\delta ({G}_{3}))$</annotation>\n </semantics></math> guarantee the existence of a rainbow triangle? This may be seen as a minimum-degree version of a problem of Aharoni, DeVos, de la Maza, Montejano and Šámal on density conditions for rainbow triangles, which was recently resolved by the authors. We establish that the extremal behaviour in the minimum-degree setting differs strikingly from that seen in the density setting, with discrete jumps as opposed to continuous transitions. Our work leaves a number of natural questions open, which we discuss.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23109","citationCount":"0","resultStr":"{\"title\":\"Minimum-degree conditions for rainbow triangles\",\"authors\":\"Victor Falgas-Ravry, Klas Markström, Eero Räty\",\"doi\":\"10.1002/jgt.23109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n \\n <mo>≔</mo>\\n <mrow>\\n <mo>(</mo>\\n \\n <msub>\\n <mi>G</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>G</mi>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>G</mi>\\n \\n <mn>3</mn>\\n </msub>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\bf{G}}:= ({G}_{1},{G}_{2},{G}_{3})$</annotation>\\n </semantics></math> be a triple of graphs on a common vertex set <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>V</mi>\\n </mrow>\\n <annotation> $V$</annotation>\\n </semantics></math> of size <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math>. A rainbow triangle in <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> ${\\\\bf{G}}$</annotation>\\n </semantics></math> is a triple of edges <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <msub>\\n <mi>e</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>e</mi>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>e</mi>\\n \\n <mn>3</mn>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $({e}_{1},{e}_{2},{e}_{3})$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>e</mi>\\n \\n <mi>i</mi>\\n </msub>\\n \\n <mo>∈</mo>\\n \\n <msub>\\n <mi>G</mi>\\n \\n <mi>i</mi>\\n </msub>\\n </mrow>\\n <annotation> ${e}_{i}\\\\in {G}_{i}$</annotation>\\n </semantics></math> for each <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>i</mi>\\n </mrow>\\n <annotation> $i$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>{</mo>\\n <mrow>\\n <msub>\\n <mi>e</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>e</mi>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>e</mi>\\n \\n <mn>3</mn>\\n </msub>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\{{e}_{1},{e}_{2},{e}_{3}\\\\}$</annotation>\\n </semantics></math> forming a triangle in <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>V</mi>\\n </mrow>\\n <annotation> $V$</annotation>\\n </semantics></math>. In this paper we consider the following question: what triples of minimum-degree conditions <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>δ</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <msub>\\n <mi>G</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>,</mo>\\n \\n <mi>δ</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <msub>\\n <mi>G</mi>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>,</mo>\\n \\n <mi>δ</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <msub>\\n <mi>G</mi>\\n \\n <mn>3</mn>\\n </msub>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(\\\\delta ({G}_{1}),\\\\delta ({G}_{2}),\\\\delta ({G}_{3}))$</annotation>\\n </semantics></math> guarantee the existence of a rainbow triangle? This may be seen as a minimum-degree version of a problem of Aharoni, DeVos, de la Maza, Montejano and Šámal on density conditions for rainbow triangles, which was recently resolved by the authors. We establish that the extremal behaviour in the minimum-degree setting differs strikingly from that seen in the density setting, with discrete jumps as opposed to continuous transitions. Our work leaves a number of natural questions open, which we discuss.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23109\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让 是大小为 的共同顶点集上的三重图。本文考虑的问题是:哪些最小度条件三元组能保证彩虹三角形的存在?这可以看作是 Aharoni、DeVos、de la Maza、Montejano 和 Šámal 最近解决的彩虹三角形密度条件问题的最小度版本。我们发现,最小度设置中的极值行为与密度设置中的极值行为截然不同,它具有离散跃迁而非连续转换。我们的研究还留下了一些自然问题,我们将对此进行讨论。
Let be a triple of graphs on a common vertex set of size . A rainbow triangle in is a triple of edges with for each and forming a triangle in . In this paper we consider the following question: what triples of minimum-degree conditions guarantee the existence of a rainbow triangle? This may be seen as a minimum-degree version of a problem of Aharoni, DeVos, de la Maza, Montejano and Šámal on density conditions for rainbow triangles, which was recently resolved by the authors. We establish that the extremal behaviour in the minimum-degree setting differs strikingly from that seen in the density setting, with discrete jumps as opposed to continuous transitions. Our work leaves a number of natural questions open, which we discuss.