不透明的 R 矩阵计算:III.自电离共振的等离子体展宽

IF 1.5 4区 物理与天体物理 Q3 OPTICS Journal of Physics B: Atomic, Molecular and Optical Physics Pub Date : 2024-05-16 DOI:10.1088/1361-6455/ad421d
A K Pradhan
{"title":"不透明的 R 矩阵计算:III.自电离共振的等离子体展宽","authors":"A K Pradhan","doi":"10.1088/1361-6455/ad421d","DOIUrl":null,"url":null,"abstract":"A general formulation is employed to study and quantitatively ascertain the effect of plasma broadening of intrinsic autoionizing (AI) resonances in photoionization cross sections. In particular, R-matrix data for iron ions described in the previous paper in the RMOP series (RMOP-II, hereafter RMOP2) are used to demonstrate underlying physical mechanisms due to electron collisions, ion microfields (Stark), thermal Doppler effects, core excitations, and free–free transitions. Breit–Pauli R-matrix cross sections for a large number of bound levels of Fe ions are considered, 454 levels of Fe XVII, 1184 levels of Fe XVIII and 508 levels of Fe XIX. Following a description of theoretical and computational methods, a sample of results is presented to show significant broadening and shifting of AI resonances due to extrinsic plasma broadening as a function of temperature and density. The redistribution of AI resonance strengths broadly preserves their integrated strengths as well as the naturally intrinsic asymmetric shapes of resonance complexes which are broadened, smeared and flattened, eventually dissolving into the bound-free continua.","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":"28 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"R-matrix calculations for opacities: III. Plasma broadening of autoionizing resonances\",\"authors\":\"A K Pradhan\",\"doi\":\"10.1088/1361-6455/ad421d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A general formulation is employed to study and quantitatively ascertain the effect of plasma broadening of intrinsic autoionizing (AI) resonances in photoionization cross sections. In particular, R-matrix data for iron ions described in the previous paper in the RMOP series (RMOP-II, hereafter RMOP2) are used to demonstrate underlying physical mechanisms due to electron collisions, ion microfields (Stark), thermal Doppler effects, core excitations, and free–free transitions. Breit–Pauli R-matrix cross sections for a large number of bound levels of Fe ions are considered, 454 levels of Fe XVII, 1184 levels of Fe XVIII and 508 levels of Fe XIX. Following a description of theoretical and computational methods, a sample of results is presented to show significant broadening and shifting of AI resonances due to extrinsic plasma broadening as a function of temperature and density. The redistribution of AI resonance strengths broadly preserves their integrated strengths as well as the naturally intrinsic asymmetric shapes of resonance complexes which are broadened, smeared and flattened, eventually dissolving into the bound-free continua.\",\"PeriodicalId\":16826,\"journal\":{\"name\":\"Journal of Physics B: Atomic, Molecular and Optical Physics\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics B: Atomic, Molecular and Optical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6455/ad421d\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics B: Atomic, Molecular and Optical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6455/ad421d","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

采用了一种一般的方法来研究和定量确定等离子体对光离子化截面中固有自电离(AI)共振的拓宽效应。特别是,RMOP 系列的上一篇论文(RMOP-II,以下简称 RMOP2)中描述的铁离子的 R 矩阵数据被用来证明由于电子碰撞、离子微场(斯塔克)、热多普勒效应、核激发和自由跃迁而产生的潜在物理机制。考虑了大量铁离子束缚水平的 Breit-Pauli R 矩阵截面,包括 454 个 Fe XVII 水平、1184 个 Fe XVIII 水平和 508 个 Fe XIX 水平。在对理论和计算方法进行描述之后,我们展示了一个结果样本,它显示了由于等离子体外展宽而导致的 AI 共振的显著展宽和移动,它是温度和密度的函数。人工合成共振强度的重新分布大体上保留了它们的综合强度,以及共振复合物自然固有的不对称形状,这些共振复合物被拓宽、抹平和压扁,最终溶解到无结合的连续体中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
R-matrix calculations for opacities: III. Plasma broadening of autoionizing resonances
A general formulation is employed to study and quantitatively ascertain the effect of plasma broadening of intrinsic autoionizing (AI) resonances in photoionization cross sections. In particular, R-matrix data for iron ions described in the previous paper in the RMOP series (RMOP-II, hereafter RMOP2) are used to demonstrate underlying physical mechanisms due to electron collisions, ion microfields (Stark), thermal Doppler effects, core excitations, and free–free transitions. Breit–Pauli R-matrix cross sections for a large number of bound levels of Fe ions are considered, 454 levels of Fe XVII, 1184 levels of Fe XVIII and 508 levels of Fe XIX. Following a description of theoretical and computational methods, a sample of results is presented to show significant broadening and shifting of AI resonances due to extrinsic plasma broadening as a function of temperature and density. The redistribution of AI resonance strengths broadly preserves their integrated strengths as well as the naturally intrinsic asymmetric shapes of resonance complexes which are broadened, smeared and flattened, eventually dissolving into the bound-free continua.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
6.20%
发文量
182
审稿时长
2.8 months
期刊介绍: Published twice-monthly (24 issues per year), Journal of Physics B: Atomic, Molecular and Optical Physics covers the study of atoms, ions, molecules and clusters, and their structure and interactions with particles, photons or fields. The journal also publishes articles dealing with those aspects of spectroscopy, quantum optics and non-linear optics, laser physics, astrophysics, plasma physics, chemical physics, optical cooling and trapping and other investigations where the objects of study are the elementary atomic, ionic or molecular properties of processes.
期刊最新文献
X-ray circular dichroism measured by cross-polarization x-ray transient grating Toward a Mølmer Sørensen gate with .9999 fidelity Quantum states and spectra of small cylindrical and toroidal lattices Addendum: Multichannel quantum defect theory of strontium bound Rydberg states (2014 J. Phys. B: At. Mol. Opt. Phys. 47 155001) Absolute nuclear charge radius by Na-like spectral line separation in high-Z elements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1