在不同温度下通过等温氧化诱导期延长生物柴油的保质期

Robert O. Dunn
{"title":"在不同温度下通过等温氧化诱导期延长生物柴油的保质期","authors":"Robert O. Dunn","doi":"10.1002/aocs.12848","DOIUrl":null,"url":null,"abstract":"Biodiesel (fatty acid methyl esters [FAME]) is a renewable biomass‐based diesel (BBD) fuel made from plant oils, animal fats and waste greases. One of the main disadvantages of biodiesel is its poor oxidative stability, which is caused by the presence of high concentrations of unsaturated FAME. When stored in fuel terminals, vehicle tanks and fuel systems, biodiesel can react with oxygen in ambient air, causing it to degrade, which can adversely affect its viscosity and ignition quality. The shelf‐life (SL) of biodiesel is an important property that defines how long it can be stored at low temperatures. The objective of this work is to develop reliable mathematical models to estimate the SL of biodiesel at T = 25°C (298.15 K). This was done by measuring oxidation induction period with a Rancimat instrument (IP<jats:sub>R</jats:sub>) at variable temperatures. The data were analyzed by linear regression to determine ln(IP<jats:sub>R</jats:sub>) as a function of T (Model A) and T<jats:sup>−1</jats:sup> (Model B) for canola, palm and soybean oil FAME (CaME, PME and SME), methyl oleate (MeC18:1) and methyl linoleate (MeC18:2). Statistical analysis of the Model A and Model B type equations showed that all inferred equations were good fits of the experimental data (adjusted coefficients of determination, <jats:italic>R</jats:italic><jats:sup>2</jats:sup> ≥ 0.985). The most dependable results were obtained from extrapolation of Model B type equations to predict the SL<jats:sup>B</jats:sup> values. For CaME, PME, SME and MeC18:1, SL<jats:sup>B</jats:sup> = 559.0, 1135, 378.3 and 4515 d were inferred. However, the reliability of SL<jats:sup>A</jats:sup> (extrapolated from its Model A type equation) and SL<jats:sup>B</jats:sup> values calculated for MeC18:2 (3.1 and 4.8 d) were questionable as estimates of its SL at 298.15 K.","PeriodicalId":501405,"journal":{"name":"The Journal of the American Oil Chemists’ Society","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shelf‐life of biodiesel by isothermal oxidation induction period at variable temperatures\",\"authors\":\"Robert O. Dunn\",\"doi\":\"10.1002/aocs.12848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biodiesel (fatty acid methyl esters [FAME]) is a renewable biomass‐based diesel (BBD) fuel made from plant oils, animal fats and waste greases. One of the main disadvantages of biodiesel is its poor oxidative stability, which is caused by the presence of high concentrations of unsaturated FAME. When stored in fuel terminals, vehicle tanks and fuel systems, biodiesel can react with oxygen in ambient air, causing it to degrade, which can adversely affect its viscosity and ignition quality. The shelf‐life (SL) of biodiesel is an important property that defines how long it can be stored at low temperatures. The objective of this work is to develop reliable mathematical models to estimate the SL of biodiesel at T = 25°C (298.15 K). This was done by measuring oxidation induction period with a Rancimat instrument (IP<jats:sub>R</jats:sub>) at variable temperatures. The data were analyzed by linear regression to determine ln(IP<jats:sub>R</jats:sub>) as a function of T (Model A) and T<jats:sup>−1</jats:sup> (Model B) for canola, palm and soybean oil FAME (CaME, PME and SME), methyl oleate (MeC18:1) and methyl linoleate (MeC18:2). Statistical analysis of the Model A and Model B type equations showed that all inferred equations were good fits of the experimental data (adjusted coefficients of determination, <jats:italic>R</jats:italic><jats:sup>2</jats:sup> ≥ 0.985). The most dependable results were obtained from extrapolation of Model B type equations to predict the SL<jats:sup>B</jats:sup> values. For CaME, PME, SME and MeC18:1, SL<jats:sup>B</jats:sup> = 559.0, 1135, 378.3 and 4515 d were inferred. However, the reliability of SL<jats:sup>A</jats:sup> (extrapolated from its Model A type equation) and SL<jats:sup>B</jats:sup> values calculated for MeC18:2 (3.1 and 4.8 d) were questionable as estimates of its SL at 298.15 K.\",\"PeriodicalId\":501405,\"journal\":{\"name\":\"The Journal of the American Oil Chemists’ Society\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of the American Oil Chemists’ Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/aocs.12848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of the American Oil Chemists’ Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aocs.12848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物柴油(脂肪酸甲酯 [FAME])是一种可再生的生物质柴油(BBD)燃料,由植物油、动物脂肪和废油脂制成。生物柴油的主要缺点之一是氧化稳定性差,这是由高浓度的不饱和脂肪酸甲酯造成的。生物柴油储存在燃料终端、车辆油箱和燃料系统中时,会与环境空气中的氧气发生反应,导致生物柴油降解,从而对其粘度和点火质量产生不利影响。生物柴油的保质期(SL)是一项重要特性,它决定了生物柴油在低温条件下可以储存多长时间。这项工作的目的是建立可靠的数学模型,以估算生物柴油在 T = 25°C (298.15 K)时的保质期。具体方法是使用 Rancimat 仪器(IPR)测量不同温度下的氧化诱导期。通过线性回归分析,确定了油菜籽油、棕榈油和大豆油 FAME(CaME、PME 和 SME)、油酸甲酯(MeC18:1)和亚油酸甲酯(MeC18:2)的 ln(IPR)与 T(模型 A)和 T-1(模型 B)的函数关系。对模型 A 和模型 B 型方程的统计分析表明,所有推断方程都很好地拟合了实验数据(调整后的决定系数 R2 ≥ 0.985)。用模型 B 型方程外推预测 SLB 值的结果最为可靠。对于 CaME、PME、SME 和 MeC18:1,分别推断出 SLB = 559.0、1135、378.3 和 4515 d。然而,从 MeC18:2 的 SLA(根据其 A 型方程推断)和 SLB 值(3.1 和 4.8 d)来估计其在 298.15 K 下的 SL 值,其可靠性值得怀疑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Shelf‐life of biodiesel by isothermal oxidation induction period at variable temperatures
Biodiesel (fatty acid methyl esters [FAME]) is a renewable biomass‐based diesel (BBD) fuel made from plant oils, animal fats and waste greases. One of the main disadvantages of biodiesel is its poor oxidative stability, which is caused by the presence of high concentrations of unsaturated FAME. When stored in fuel terminals, vehicle tanks and fuel systems, biodiesel can react with oxygen in ambient air, causing it to degrade, which can adversely affect its viscosity and ignition quality. The shelf‐life (SL) of biodiesel is an important property that defines how long it can be stored at low temperatures. The objective of this work is to develop reliable mathematical models to estimate the SL of biodiesel at T = 25°C (298.15 K). This was done by measuring oxidation induction period with a Rancimat instrument (IPR) at variable temperatures. The data were analyzed by linear regression to determine ln(IPR) as a function of T (Model A) and T−1 (Model B) for canola, palm and soybean oil FAME (CaME, PME and SME), methyl oleate (MeC18:1) and methyl linoleate (MeC18:2). Statistical analysis of the Model A and Model B type equations showed that all inferred equations were good fits of the experimental data (adjusted coefficients of determination, R2 ≥ 0.985). The most dependable results were obtained from extrapolation of Model B type equations to predict the SLB values. For CaME, PME, SME and MeC18:1, SLB = 559.0, 1135, 378.3 and 4515 d were inferred. However, the reliability of SLA (extrapolated from its Model A type equation) and SLB values calculated for MeC18:2 (3.1 and 4.8 d) were questionable as estimates of its SL at 298.15 K.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Medium engineering of lipase‐catalyzed reaction using CO2 Direct application of tungstosilicic acid hydrate for the treatment of high free fatty acid in acidic crude palm oil and for biodiesel production A thorough evaluation of flavor characteristics among various retail peanut oil products using multivariate statistical methods Molecular insights into the oleic acid accumulation in safflower Antioxidant and prooxidant activity of acid‐hydrolyzed phenolic extracts of sugar beet leaves in oil‐in‐water emulsions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1