{"title":"用于细粒度视觉识别的元标签相关损失","authors":"Yanchao Li, Fu Xiao, Hao Li, Qun Li, Shui Yu","doi":"10.1007/s11432-023-3922-2","DOIUrl":null,"url":null,"abstract":"<p>Recently, intensive attempts have been made to design robust models for fine-grained visual recognition, most notably are the impressive gains for training with noisy labels by incorporating a reweighting strategy into a meta-learning framework. However, it is limited to up or downweighting the contribution of an instance for label reweighting approaches in the learning process. To solve this issue, a novel noise-tolerant method with auxiliary web data is proposed. Specifically, first, the associations made from embeddings of well-labeled data with those of web data and back at the same class are measured. Next, its association probability is employed as a weighting fusion strategy into angular margin-based loss, which makes the trained model robust to noisy datasets. To reduce the influence of the gap between the well-labeled and noisy web data, a bridge schema is proposed via the corresponding loss that encourages the learned embeddings to be coherent. Lastly, the formulation is encapsulated into the meta-learning framework, which can reduce the overfitting of models and learn the network parameters to be noise-tolerant. Extensive experiments are performed on benchmark datasets, and the results clearly show the superiority of the proposed method over existing state-of-the-art approaches.</p>","PeriodicalId":21618,"journal":{"name":"Science China Information Sciences","volume":"132 1","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meta label associated loss for fine-grained visual recognition\",\"authors\":\"Yanchao Li, Fu Xiao, Hao Li, Qun Li, Shui Yu\",\"doi\":\"10.1007/s11432-023-3922-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recently, intensive attempts have been made to design robust models for fine-grained visual recognition, most notably are the impressive gains for training with noisy labels by incorporating a reweighting strategy into a meta-learning framework. However, it is limited to up or downweighting the contribution of an instance for label reweighting approaches in the learning process. To solve this issue, a novel noise-tolerant method with auxiliary web data is proposed. Specifically, first, the associations made from embeddings of well-labeled data with those of web data and back at the same class are measured. Next, its association probability is employed as a weighting fusion strategy into angular margin-based loss, which makes the trained model robust to noisy datasets. To reduce the influence of the gap between the well-labeled and noisy web data, a bridge schema is proposed via the corresponding loss that encourages the learned embeddings to be coherent. Lastly, the formulation is encapsulated into the meta-learning framework, which can reduce the overfitting of models and learn the network parameters to be noise-tolerant. Extensive experiments are performed on benchmark datasets, and the results clearly show the superiority of the proposed method over existing state-of-the-art approaches.</p>\",\"PeriodicalId\":21618,\"journal\":{\"name\":\"Science China Information Sciences\",\"volume\":\"132 1\",\"pages\":\"\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11432-023-3922-2\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11432-023-3922-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Meta label associated loss for fine-grained visual recognition
Recently, intensive attempts have been made to design robust models for fine-grained visual recognition, most notably are the impressive gains for training with noisy labels by incorporating a reweighting strategy into a meta-learning framework. However, it is limited to up or downweighting the contribution of an instance for label reweighting approaches in the learning process. To solve this issue, a novel noise-tolerant method with auxiliary web data is proposed. Specifically, first, the associations made from embeddings of well-labeled data with those of web data and back at the same class are measured. Next, its association probability is employed as a weighting fusion strategy into angular margin-based loss, which makes the trained model robust to noisy datasets. To reduce the influence of the gap between the well-labeled and noisy web data, a bridge schema is proposed via the corresponding loss that encourages the learned embeddings to be coherent. Lastly, the formulation is encapsulated into the meta-learning framework, which can reduce the overfitting of models and learn the network parameters to be noise-tolerant. Extensive experiments are performed on benchmark datasets, and the results clearly show the superiority of the proposed method over existing state-of-the-art approaches.
期刊介绍:
Science China Information Sciences is a dedicated journal that showcases high-quality, original research across various domains of information sciences. It encompasses Computer Science & Technologies, Control Science & Engineering, Information & Communication Engineering, Microelectronics & Solid-State Electronics, and Quantum Information, providing a platform for the dissemination of significant contributions in these fields.