Andrew W D'Souza, Jonathan P Moore, Kazumasa Manabe, Justin S Lawley, Takuro Washio, Sarah L Hissen, Belinda Sanchez, Qi Fu
{"title":"在有节奏的手握运动中,姿势和生理性别对肌肉交感神经活动控制的交互影响。","authors":"Andrew W D'Souza, Jonathan P Moore, Kazumasa Manabe, Justin S Lawley, Takuro Washio, Sarah L Hissen, Belinda Sanchez, Qi Fu","doi":"10.1152/ajpregu.00055.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Body posture and biological sex exhibit independent effects on the sympathetic neural responses to dynamic exercise. However, the neural mechanisms (e.g., baroreflex) by which posture impacts sympathetic outflow during rhythmic muscular contractions, and whether biological sex affects posture-mediated changes in efferent sympathetic nerve traffic during exercise, remain unknown. Thus, we tested the hypotheses that increases in muscle sympathetic nerve activity (MSNA) would be greater during upright compared with supine rhythmic handgrip (RHG) exercise, and that females would demonstrate smaller increases in MSNA during upright RHG exercise than males. Twenty young (30 [6] yr; means [SD]) individuals (9 males, 11 females) underwent 6 min of supine and upright (head-up tilt 45°) RHG exercise at 40% maximal voluntary contraction with continuous measurements of MSNA (microneurography), blood pressure (photoplethysmography), and heart rate (electrocardiogram). In the pooled group, absolute MSNA burst frequency (<i>P</i> < 0.001), amplitude (<i>P</i> = 0.009), and total MSNA (<i>P</i> < 0.001) were higher during upright compared with supine RHG exercise. However, body posture did not impact the peak change in MSNA during RHG exercise (range: <i>P</i> = 0.063-0.495). Spontaneous sympathetic baroreflex gain decreased from rest to RHG exercise (<i>P</i> = 0.006) and was not impacted by posture (<i>P</i> = 0.347). During upright RHG exercise, males demonstrated larger increases in MSNA burst amplitude (<i>P</i> = 0.002) and total MSNA (<i>P</i> = 0.001) compared with females, which coincided with greater reductions in sympathetic baroreflex gain among males (<i>P</i> = 0.004). Collectively, these data indicate that acute attenuation of baroreflex-mediated sympathoinhibition permits increases in MSNA during RHG exercise and that males exhibit a greater reserve for efferent sympathetic neural recruitment during orthostasis than females.<b>NEW & NOTEWORTHY</b> The impact of posture and sex on cardiovascular control during rhythmic handgrip (RHG) exercise is unknown. We show that increases in muscle sympathetic nerve activity (MSNA) during RHG are partly mediated by a reduction in sympathetic baroreflex gain. In addition, males demonstrate larger increases in total MSNA during upright RHG than females. These data indicate that the baroreflex partly mediates increases in MSNA during RHG and that males have a greater sympathetic vasoconstrictor reserve than females.</p>","PeriodicalId":7630,"journal":{"name":"American journal of physiology. Regulatory, integrative and comparative physiology","volume":" ","pages":"R133-R144"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The interactive effects of posture and biological sex on the control of muscle sympathetic nerve activity during rhythmic handgrip exercise.\",\"authors\":\"Andrew W D'Souza, Jonathan P Moore, Kazumasa Manabe, Justin S Lawley, Takuro Washio, Sarah L Hissen, Belinda Sanchez, Qi Fu\",\"doi\":\"10.1152/ajpregu.00055.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Body posture and biological sex exhibit independent effects on the sympathetic neural responses to dynamic exercise. However, the neural mechanisms (e.g., baroreflex) by which posture impacts sympathetic outflow during rhythmic muscular contractions, and whether biological sex affects posture-mediated changes in efferent sympathetic nerve traffic during exercise, remain unknown. Thus, we tested the hypotheses that increases in muscle sympathetic nerve activity (MSNA) would be greater during upright compared with supine rhythmic handgrip (RHG) exercise, and that females would demonstrate smaller increases in MSNA during upright RHG exercise than males. Twenty young (30 [6] yr; means [SD]) individuals (9 males, 11 females) underwent 6 min of supine and upright (head-up tilt 45°) RHG exercise at 40% maximal voluntary contraction with continuous measurements of MSNA (microneurography), blood pressure (photoplethysmography), and heart rate (electrocardiogram). In the pooled group, absolute MSNA burst frequency (<i>P</i> < 0.001), amplitude (<i>P</i> = 0.009), and total MSNA (<i>P</i> < 0.001) were higher during upright compared with supine RHG exercise. However, body posture did not impact the peak change in MSNA during RHG exercise (range: <i>P</i> = 0.063-0.495). Spontaneous sympathetic baroreflex gain decreased from rest to RHG exercise (<i>P</i> = 0.006) and was not impacted by posture (<i>P</i> = 0.347). During upright RHG exercise, males demonstrated larger increases in MSNA burst amplitude (<i>P</i> = 0.002) and total MSNA (<i>P</i> = 0.001) compared with females, which coincided with greater reductions in sympathetic baroreflex gain among males (<i>P</i> = 0.004). Collectively, these data indicate that acute attenuation of baroreflex-mediated sympathoinhibition permits increases in MSNA during RHG exercise and that males exhibit a greater reserve for efferent sympathetic neural recruitment during orthostasis than females.<b>NEW & NOTEWORTHY</b> The impact of posture and sex on cardiovascular control during rhythmic handgrip (RHG) exercise is unknown. We show that increases in muscle sympathetic nerve activity (MSNA) during RHG are partly mediated by a reduction in sympathetic baroreflex gain. In addition, males demonstrate larger increases in total MSNA during upright RHG than females. These data indicate that the baroreflex partly mediates increases in MSNA during RHG and that males have a greater sympathetic vasoconstrictor reserve than females.</p>\",\"PeriodicalId\":7630,\"journal\":{\"name\":\"American journal of physiology. Regulatory, integrative and comparative physiology\",\"volume\":\" \",\"pages\":\"R133-R144\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Regulatory, integrative and comparative physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpregu.00055.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Regulatory, integrative and comparative physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpregu.00055.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
The interactive effects of posture and biological sex on the control of muscle sympathetic nerve activity during rhythmic handgrip exercise.
Body posture and biological sex exhibit independent effects on the sympathetic neural responses to dynamic exercise. However, the neural mechanisms (e.g., baroreflex) by which posture impacts sympathetic outflow during rhythmic muscular contractions, and whether biological sex affects posture-mediated changes in efferent sympathetic nerve traffic during exercise, remain unknown. Thus, we tested the hypotheses that increases in muscle sympathetic nerve activity (MSNA) would be greater during upright compared with supine rhythmic handgrip (RHG) exercise, and that females would demonstrate smaller increases in MSNA during upright RHG exercise than males. Twenty young (30 [6] yr; means [SD]) individuals (9 males, 11 females) underwent 6 min of supine and upright (head-up tilt 45°) RHG exercise at 40% maximal voluntary contraction with continuous measurements of MSNA (microneurography), blood pressure (photoplethysmography), and heart rate (electrocardiogram). In the pooled group, absolute MSNA burst frequency (P < 0.001), amplitude (P = 0.009), and total MSNA (P < 0.001) were higher during upright compared with supine RHG exercise. However, body posture did not impact the peak change in MSNA during RHG exercise (range: P = 0.063-0.495). Spontaneous sympathetic baroreflex gain decreased from rest to RHG exercise (P = 0.006) and was not impacted by posture (P = 0.347). During upright RHG exercise, males demonstrated larger increases in MSNA burst amplitude (P = 0.002) and total MSNA (P = 0.001) compared with females, which coincided with greater reductions in sympathetic baroreflex gain among males (P = 0.004). Collectively, these data indicate that acute attenuation of baroreflex-mediated sympathoinhibition permits increases in MSNA during RHG exercise and that males exhibit a greater reserve for efferent sympathetic neural recruitment during orthostasis than females.NEW & NOTEWORTHY The impact of posture and sex on cardiovascular control during rhythmic handgrip (RHG) exercise is unknown. We show that increases in muscle sympathetic nerve activity (MSNA) during RHG are partly mediated by a reduction in sympathetic baroreflex gain. In addition, males demonstrate larger increases in total MSNA during upright RHG than females. These data indicate that the baroreflex partly mediates increases in MSNA during RHG and that males have a greater sympathetic vasoconstrictor reserve than females.
期刊介绍:
The American Journal of Physiology-Regulatory, Integrative and Comparative Physiology publishes original investigations that illuminate normal or abnormal regulation and integration of physiological mechanisms at all levels of biological organization, ranging from molecules to humans, including clinical investigations. Major areas of emphasis include regulation in genetically modified animals; model organisms; development and tissue plasticity; neurohumoral control of circulation and hypertension; local control of circulation; cardiac and renal integration; thirst and volume, electrolyte homeostasis; glucose homeostasis and energy balance; appetite and obesity; inflammation and cytokines; integrative physiology of pregnancy-parturition-lactation; and thermoregulation and adaptations to exercise and environmental stress.