Tali Eviatar, Adi Pappo, Tal Freund, Yishai Friedlander, Ori Elkayam, David Hagin, Merav Heshin-Bekenstein
{"title":"小儿自身免疫性炎症性风湿病患者和对照组对抗 SARS-CoV-2 BNT162b2 mRNA 疫苗的细胞免疫反应。","authors":"Tali Eviatar, Adi Pappo, Tal Freund, Yishai Friedlander, Ori Elkayam, David Hagin, Merav Heshin-Bekenstein","doi":"10.1093/cei/uxae044","DOIUrl":null,"url":null,"abstract":"<p><p>This paper aims to compare the cellular immune response to the SARS-CoV-2 BNT162b2 vaccine of pediatric patients with autoimmune inflammatory rheumatic disease (pAIIRD) and healthy controls. A prospective longitudinal study was conducted between April 2021 and December 2022 at the Tel Aviv Medical Center. Children <18 years, with pediatric-onset AIIRD and healthy controls, who have received at least two doses of the BNT162b2 vaccine, were included. Humoral response was evaluated by serum levels of anti-SARS-CoV-2 receptor-binding domain antibodies. Cellular response was evaluated by flow cytometry, measuring IFNγ and TNFα production by CD4+ T cells following stimulation with SARS-CoV-2 Spike peptide mix. The study included 20 pAIIRD patients and 11 controls. The mean age of participants was 12.6 ± 2.94 years, with 58.1% females. The cellular response to the BNT162b2 vaccine was statistically similar in both groups. However, the humoral response was statistically lower in pAIIRD compared with the healthy control group. There was no statistically significant correlation between the humoral response and cellular response. During the study period, 43.75% of AIIRD children and 72.7% of controls had a breakthrough COVID-19 infection (P = 0.48). Bivariate models examining the effect of the cellular response and presence of an AIIRD on breakthrough infections found no effect. Compared with healthy controls, pAIIRD demonstrated similar cellular responses. Patients showed reduced humoral response compared with healthy adolescents, but similar breakthrough infection rates. These findings may support the importance of the cellular response in protecting against COVID-19 infections.</p>","PeriodicalId":10268,"journal":{"name":"Clinical and experimental immunology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11239557/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cellular immune response to the anti-SARS-CoV-2 BNT162b2 mRNA vaccine in pediatric autoimmune inflammatory rheumatic disease patients and controls.\",\"authors\":\"Tali Eviatar, Adi Pappo, Tal Freund, Yishai Friedlander, Ori Elkayam, David Hagin, Merav Heshin-Bekenstein\",\"doi\":\"10.1093/cei/uxae044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper aims to compare the cellular immune response to the SARS-CoV-2 BNT162b2 vaccine of pediatric patients with autoimmune inflammatory rheumatic disease (pAIIRD) and healthy controls. A prospective longitudinal study was conducted between April 2021 and December 2022 at the Tel Aviv Medical Center. Children <18 years, with pediatric-onset AIIRD and healthy controls, who have received at least two doses of the BNT162b2 vaccine, were included. Humoral response was evaluated by serum levels of anti-SARS-CoV-2 receptor-binding domain antibodies. Cellular response was evaluated by flow cytometry, measuring IFNγ and TNFα production by CD4+ T cells following stimulation with SARS-CoV-2 Spike peptide mix. The study included 20 pAIIRD patients and 11 controls. The mean age of participants was 12.6 ± 2.94 years, with 58.1% females. The cellular response to the BNT162b2 vaccine was statistically similar in both groups. However, the humoral response was statistically lower in pAIIRD compared with the healthy control group. There was no statistically significant correlation between the humoral response and cellular response. During the study period, 43.75% of AIIRD children and 72.7% of controls had a breakthrough COVID-19 infection (P = 0.48). Bivariate models examining the effect of the cellular response and presence of an AIIRD on breakthrough infections found no effect. Compared with healthy controls, pAIIRD demonstrated similar cellular responses. Patients showed reduced humoral response compared with healthy adolescents, but similar breakthrough infection rates. These findings may support the importance of the cellular response in protecting against COVID-19 infections.</p>\",\"PeriodicalId\":10268,\"journal\":{\"name\":\"Clinical and experimental immunology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11239557/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and experimental immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/cei/uxae044\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and experimental immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cei/uxae044","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Cellular immune response to the anti-SARS-CoV-2 BNT162b2 mRNA vaccine in pediatric autoimmune inflammatory rheumatic disease patients and controls.
This paper aims to compare the cellular immune response to the SARS-CoV-2 BNT162b2 vaccine of pediatric patients with autoimmune inflammatory rheumatic disease (pAIIRD) and healthy controls. A prospective longitudinal study was conducted between April 2021 and December 2022 at the Tel Aviv Medical Center. Children <18 years, with pediatric-onset AIIRD and healthy controls, who have received at least two doses of the BNT162b2 vaccine, were included. Humoral response was evaluated by serum levels of anti-SARS-CoV-2 receptor-binding domain antibodies. Cellular response was evaluated by flow cytometry, measuring IFNγ and TNFα production by CD4+ T cells following stimulation with SARS-CoV-2 Spike peptide mix. The study included 20 pAIIRD patients and 11 controls. The mean age of participants was 12.6 ± 2.94 years, with 58.1% females. The cellular response to the BNT162b2 vaccine was statistically similar in both groups. However, the humoral response was statistically lower in pAIIRD compared with the healthy control group. There was no statistically significant correlation between the humoral response and cellular response. During the study period, 43.75% of AIIRD children and 72.7% of controls had a breakthrough COVID-19 infection (P = 0.48). Bivariate models examining the effect of the cellular response and presence of an AIIRD on breakthrough infections found no effect. Compared with healthy controls, pAIIRD demonstrated similar cellular responses. Patients showed reduced humoral response compared with healthy adolescents, but similar breakthrough infection rates. These findings may support the importance of the cellular response in protecting against COVID-19 infections.
期刊介绍:
Clinical & Experimental Immunology (established in 1966) is an authoritative international journal publishing high-quality research studies in translational and clinical immunology that have the potential to transform our understanding of the immunopathology of human disease and/or change clinical practice.
The journal is focused on translational and clinical immunology and is among the foremost journals in this field, attracting high-quality papers from across the world. Translation is viewed as a process of applying ideas, insights and discoveries generated through scientific studies to the treatment, prevention or diagnosis of human disease. Clinical immunology has evolved as a field to encompass the application of state-of-the-art technologies such as next-generation sequencing, metagenomics and high-dimensional phenotyping to understand mechanisms that govern the outcomes of clinical trials.