{"title":"肌酸激酶-MM/原癌基因酪氨酸蛋白激酶受体作为杜氏肌肉萎缩症携带者的敏感指标","authors":"Zhilei Zhang, Dongyang Hong, Dingyuan Ma, Peiying Yang, Jingjing Zhang, Xin Wang, Yan Wang, Lulu Meng, Yanyun Wang, Yahong Li, Yun Sun, Tao Jiang, Zhengfeng Xu","doi":"10.1007/s12035-024-04235-z","DOIUrl":null,"url":null,"abstract":"<p><p>Duchenne muscular dystrophy (DMD), a lethal X-linked recessive genetic disease, is characterized by progressive muscle wasting which will lead to premature death by cardiorespiratory complications in their late twenties. And 2.5-19% DMD carriers that also suffer from skeletal muscle damage or dilated cardiomyopathy when diagnosed as soon as possible is meaningful for prenatal diagnosis and advance warning for self-health. The current DMD carrier screening mainly relies on detecting serum creatine kinase activity, covering only 50-70% DMD carriers which will cause many false negatives and require the discovery of highly effective biomarker and simple detection procedure for DMD carriers. In this article, we have compiled a comprehensive summary of all documented biomarkers associated with DMD and categorized them based on their expression patterns. We specifically pinpointed novel DMD biomarkers, previously unreported in DMD carriers, and conducted further investigations to explore their potential. Compared to creatine kinase activity alone in DMD carriers, creatine kinase-MM can improve the specificity from 73 to 81%. And our investigation revealed another promising protein: proto-oncogene tyrosine-protein kinase receptor (RET). When combined with creatine kinase-MM (creatine kinase-MM/RET ratio), it significantly enhances the specificity (from 81 to 83%) and sensitivity (from 71.4 to 93%) of detecting DMD carriers in serum. Moreover, we successfully devised an efficient method for extracting RET from dried blood spots. This breakthrough allowed us to detect both creatine kinase-MM and RET using dried blood spots without compromising the detection rate.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"10645-10655"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Creatine Kinase-MM/Proto-oncogene Tyrosine-Protein Kinase Receptor as a Sensitive Indicator for Duchenne Muscular Dystrophy Carriers.\",\"authors\":\"Zhilei Zhang, Dongyang Hong, Dingyuan Ma, Peiying Yang, Jingjing Zhang, Xin Wang, Yan Wang, Lulu Meng, Yanyun Wang, Yahong Li, Yun Sun, Tao Jiang, Zhengfeng Xu\",\"doi\":\"10.1007/s12035-024-04235-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Duchenne muscular dystrophy (DMD), a lethal X-linked recessive genetic disease, is characterized by progressive muscle wasting which will lead to premature death by cardiorespiratory complications in their late twenties. And 2.5-19% DMD carriers that also suffer from skeletal muscle damage or dilated cardiomyopathy when diagnosed as soon as possible is meaningful for prenatal diagnosis and advance warning for self-health. The current DMD carrier screening mainly relies on detecting serum creatine kinase activity, covering only 50-70% DMD carriers which will cause many false negatives and require the discovery of highly effective biomarker and simple detection procedure for DMD carriers. In this article, we have compiled a comprehensive summary of all documented biomarkers associated with DMD and categorized them based on their expression patterns. We specifically pinpointed novel DMD biomarkers, previously unreported in DMD carriers, and conducted further investigations to explore their potential. Compared to creatine kinase activity alone in DMD carriers, creatine kinase-MM can improve the specificity from 73 to 81%. And our investigation revealed another promising protein: proto-oncogene tyrosine-protein kinase receptor (RET). When combined with creatine kinase-MM (creatine kinase-MM/RET ratio), it significantly enhances the specificity (from 81 to 83%) and sensitivity (from 71.4 to 93%) of detecting DMD carriers in serum. Moreover, we successfully devised an efficient method for extracting RET from dried blood spots. This breakthrough allowed us to detect both creatine kinase-MM and RET using dried blood spots without compromising the detection rate.</p>\",\"PeriodicalId\":18762,\"journal\":{\"name\":\"Molecular Neurobiology\",\"volume\":\" \",\"pages\":\"10645-10655\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12035-024-04235-z\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-024-04235-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Creatine Kinase-MM/Proto-oncogene Tyrosine-Protein Kinase Receptor as a Sensitive Indicator for Duchenne Muscular Dystrophy Carriers.
Duchenne muscular dystrophy (DMD), a lethal X-linked recessive genetic disease, is characterized by progressive muscle wasting which will lead to premature death by cardiorespiratory complications in their late twenties. And 2.5-19% DMD carriers that also suffer from skeletal muscle damage or dilated cardiomyopathy when diagnosed as soon as possible is meaningful for prenatal diagnosis and advance warning for self-health. The current DMD carrier screening mainly relies on detecting serum creatine kinase activity, covering only 50-70% DMD carriers which will cause many false negatives and require the discovery of highly effective biomarker and simple detection procedure for DMD carriers. In this article, we have compiled a comprehensive summary of all documented biomarkers associated with DMD and categorized them based on their expression patterns. We specifically pinpointed novel DMD biomarkers, previously unreported in DMD carriers, and conducted further investigations to explore their potential. Compared to creatine kinase activity alone in DMD carriers, creatine kinase-MM can improve the specificity from 73 to 81%. And our investigation revealed another promising protein: proto-oncogene tyrosine-protein kinase receptor (RET). When combined with creatine kinase-MM (creatine kinase-MM/RET ratio), it significantly enhances the specificity (from 81 to 83%) and sensitivity (from 71.4 to 93%) of detecting DMD carriers in serum. Moreover, we successfully devised an efficient method for extracting RET from dried blood spots. This breakthrough allowed us to detect both creatine kinase-MM and RET using dried blood spots without compromising the detection rate.
期刊介绍:
Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.