TeenyTinyLlama:以巴西葡萄牙语训练的开源微小语言模型

Nicholas Kluge Corrêa , Sophia Falk , Shiza Fatimah , Aniket Sen , Nythamar De Oliveira
{"title":"TeenyTinyLlama:以巴西葡萄牙语训练的开源微小语言模型","authors":"Nicholas Kluge Corrêa ,&nbsp;Sophia Falk ,&nbsp;Shiza Fatimah ,&nbsp;Aniket Sen ,&nbsp;Nythamar De Oliveira","doi":"10.1016/j.mlwa.2024.100558","DOIUrl":null,"url":null,"abstract":"<div><p>Large language models (LLMs) have significantly advanced natural language processing, but their progress has yet to be equal across languages. While most LLMs are trained in high-resource languages like English, multilingual models generally underperform monolingual ones. Additionally, aspects of their multilingual foundation sometimes restrict the byproducts they produce, like computational demands and licensing regimes. In this study, we document the development of open-foundation models tailored for use in low-resource settings, their limitations, and their benefits. This is the <em>TeenyTinyLlama</em> pair: two compact models for Brazilian Portuguese text generation. We release them under the permissive Apache 2.0 license on <span>GitHub</span><svg><path></path></svg> and <span>Hugging Face</span><svg><path></path></svg> for community use and further development.</p></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"16 ","pages":"Article 100558"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666827024000343/pdfft?md5=ca3df301a069c8298b65dcd69855e4ac&pid=1-s2.0-S2666827024000343-main.pdf","citationCount":"0","resultStr":"{\"title\":\"TeenyTinyLlama: Open-source tiny language models trained in Brazilian Portuguese\",\"authors\":\"Nicholas Kluge Corrêa ,&nbsp;Sophia Falk ,&nbsp;Shiza Fatimah ,&nbsp;Aniket Sen ,&nbsp;Nythamar De Oliveira\",\"doi\":\"10.1016/j.mlwa.2024.100558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Large language models (LLMs) have significantly advanced natural language processing, but their progress has yet to be equal across languages. While most LLMs are trained in high-resource languages like English, multilingual models generally underperform monolingual ones. Additionally, aspects of their multilingual foundation sometimes restrict the byproducts they produce, like computational demands and licensing regimes. In this study, we document the development of open-foundation models tailored for use in low-resource settings, their limitations, and their benefits. This is the <em>TeenyTinyLlama</em> pair: two compact models for Brazilian Portuguese text generation. We release them under the permissive Apache 2.0 license on <span>GitHub</span><svg><path></path></svg> and <span>Hugging Face</span><svg><path></path></svg> for community use and further development.</p></div>\",\"PeriodicalId\":74093,\"journal\":{\"name\":\"Machine learning with applications\",\"volume\":\"16 \",\"pages\":\"Article 100558\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666827024000343/pdfft?md5=ca3df301a069c8298b65dcd69855e4ac&pid=1-s2.0-S2666827024000343-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning with applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666827024000343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827024000343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(LLMs)极大地推动了自然语言处理的发展,但其在不同语言间的进展却不尽相同。虽然大多数 LLM 都是在英语等高资源语言中训练出来的,但多语言模型的表现通常不如单语言模型。此外,多语言基础有时会限制其产生的副产品,如计算要求和许可制度。在本研究中,我们记录了专为在低资源环境中使用而开发的开放基础模型、其局限性及其优势。这就是 TeenyTinyLlama 对:两个用于巴西葡萄牙语文本生成的紧凑模型。我们在 GitHub 和 Hugging Face 上以 Apache 2.0 许可发布了这两个模型,供社区使用和进一步开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TeenyTinyLlama: Open-source tiny language models trained in Brazilian Portuguese

Large language models (LLMs) have significantly advanced natural language processing, but their progress has yet to be equal across languages. While most LLMs are trained in high-resource languages like English, multilingual models generally underperform monolingual ones. Additionally, aspects of their multilingual foundation sometimes restrict the byproducts they produce, like computational demands and licensing regimes. In this study, we document the development of open-foundation models tailored for use in low-resource settings, their limitations, and their benefits. This is the TeenyTinyLlama pair: two compact models for Brazilian Portuguese text generation. We release them under the permissive Apache 2.0 license on GitHub and Hugging Face for community use and further development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
期刊最新文献
Document Layout Error Rate (DLER) metric to evaluate image segmentation methods Supervised machine learning for microbiomics: Bridging the gap between current and best practices Playing with words: Comparing the vocabulary and lexical diversity of ChatGPT and humans A survey on knowledge distillation: Recent advancements Texas rural land market integration: A causal analysis using machine learning applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1