在 Ni/CeO2 纳米棒上 100% 选择性地将甲烷转化为 C1 产品

IF 6.5 1区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Catalysis Pub Date : 2024-05-13 DOI:10.1016/j.jcat.2024.115546
Yufei Cui , Hui Yang , Wenhao Zhou , Yongqing Ma , Ganhong Zheng , Bin Chen , Chuhong Zhu , Meiling Wang
{"title":"在 Ni/CeO2 纳米棒上 100% 选择性地将甲烷转化为 C1 产品","authors":"Yufei Cui ,&nbsp;Hui Yang ,&nbsp;Wenhao Zhou ,&nbsp;Yongqing Ma ,&nbsp;Ganhong Zheng ,&nbsp;Bin Chen ,&nbsp;Chuhong Zhu ,&nbsp;Meiling Wang","doi":"10.1016/j.jcat.2024.115546","DOIUrl":null,"url":null,"abstract":"<div><p>Selective CH<sub>4</sub> upgrading to C1 products and avoiding over oxidation remains a key challenge. Here, we develop a highly efficient Ni/CeO<sub>2</sub> nanorods containing both uniformly dispersed Ni-single-site and NiO<sub>x</sub>/CeO<sub>2</sub> heterojunction for 100 % selectively CH<sub>4</sub> conversion to C1 products (CH<sub>3</sub>OH, HCHO, CH<sub>3</sub>OOH and HCOOH). Under optimized photocatalytic experimental conditions, a high C1 product yield of 5.6 mmol g<sup>-1</sup>h<sup>−1</sup> was obtained with 100 % selectivity with presence of H<sub>2</sub>O<sub>2</sub>. Mechanism study showed that the Ni-single-site together with formed oxygen vacancy (O<sub>v</sub>) facilitated CH<sub>4</sub> adsorption and activation. The terminal O atom of adsorbed ·OOH can fill the O<sub>v</sub>, with the remaining *OH initiating *CH<sub>3</sub> dehydrogenation and forming *CH<sub>2</sub>OH, which further reacts with ·OH to generate the main product HCHO. During the whole photocatalytic process, the formed NiO<sub>x</sub>/CeO<sub>2</sub> heterojunction promoted carrier separation and enhanced catalytic performance.</p></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"100% selective methane conversion to C1 products over Ni/CeO2 nanorods\",\"authors\":\"Yufei Cui ,&nbsp;Hui Yang ,&nbsp;Wenhao Zhou ,&nbsp;Yongqing Ma ,&nbsp;Ganhong Zheng ,&nbsp;Bin Chen ,&nbsp;Chuhong Zhu ,&nbsp;Meiling Wang\",\"doi\":\"10.1016/j.jcat.2024.115546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Selective CH<sub>4</sub> upgrading to C1 products and avoiding over oxidation remains a key challenge. Here, we develop a highly efficient Ni/CeO<sub>2</sub> nanorods containing both uniformly dispersed Ni-single-site and NiO<sub>x</sub>/CeO<sub>2</sub> heterojunction for 100 % selectively CH<sub>4</sub> conversion to C1 products (CH<sub>3</sub>OH, HCHO, CH<sub>3</sub>OOH and HCOOH). Under optimized photocatalytic experimental conditions, a high C1 product yield of 5.6 mmol g<sup>-1</sup>h<sup>−1</sup> was obtained with 100 % selectivity with presence of H<sub>2</sub>O<sub>2</sub>. Mechanism study showed that the Ni-single-site together with formed oxygen vacancy (O<sub>v</sub>) facilitated CH<sub>4</sub> adsorption and activation. The terminal O atom of adsorbed ·OOH can fill the O<sub>v</sub>, with the remaining *OH initiating *CH<sub>3</sub> dehydrogenation and forming *CH<sub>2</sub>OH, which further reacts with ·OH to generate the main product HCHO. During the whole photocatalytic process, the formed NiO<sub>x</sub>/CeO<sub>2</sub> heterojunction promoted carrier separation and enhanced catalytic performance.</p></div>\",\"PeriodicalId\":346,\"journal\":{\"name\":\"Journal of Catalysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021951724002598\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021951724002598","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

选择性地将 CH4 升级为 C1 产物并避免过度氧化仍然是一项关键挑战。在此,我们开发了一种高效的 Ni/CeO2 纳米棒,其中包含均匀分散的 Ni 单位点和 NiOx/CeO2 异质结,可将 CH4 100%地选择性转化为 C1 产物(CH3OH、HCHO、CH3OOH 和 HCOOH)。在优化的光催化实验条件下,当 H2O2 存在时,C1 产物的产量高达 5.6 mmol g-1h-1,选择性为 100%。机理研究表明,镍单位点与形成的氧空位(Ov)共同促进了 CH4 的吸附和活化。吸附的 -OOH 的末端 O 原子可以填充 Ov,剩余的 *OH 引发 *CH3 脱氢,形成 *CH2OH,再与 -OH 反应生成主要产物 HCHO。在整个光催化过程中,形成的 NiOx/CeO2 异质结促进了载流子的分离,提高了催化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
100% selective methane conversion to C1 products over Ni/CeO2 nanorods

Selective CH4 upgrading to C1 products and avoiding over oxidation remains a key challenge. Here, we develop a highly efficient Ni/CeO2 nanorods containing both uniformly dispersed Ni-single-site and NiOx/CeO2 heterojunction for 100 % selectively CH4 conversion to C1 products (CH3OH, HCHO, CH3OOH and HCOOH). Under optimized photocatalytic experimental conditions, a high C1 product yield of 5.6 mmol g-1h−1 was obtained with 100 % selectivity with presence of H2O2. Mechanism study showed that the Ni-single-site together with formed oxygen vacancy (Ov) facilitated CH4 adsorption and activation. The terminal O atom of adsorbed ·OOH can fill the Ov, with the remaining *OH initiating *CH3 dehydrogenation and forming *CH2OH, which further reacts with ·OH to generate the main product HCHO. During the whole photocatalytic process, the formed NiOx/CeO2 heterojunction promoted carrier separation and enhanced catalytic performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Catalysis
Journal of Catalysis 工程技术-工程:化工
CiteScore
12.30
自引率
5.50%
发文量
447
审稿时长
31 days
期刊介绍: The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes. The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods. The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.
期刊最新文献
Study on the micro-mechanism for the thermal stability of α-diimine nickel catalysts and active centers Confining polyoxometalates in porphyrin-based porous cationic polymer toward boosting visible-light-driven synthesis of sulfoxides and detoxification of mustard gas simulants Defect tailoring in K-doped carbon nitride: Enabling efficient decoupling of light and dark reactions for timely and delayed on-demand solar hydrogen production A novel and facile ultraviolet-induced photo-reduction for preparing oxidase-like AuNCs@H2N-ZIF-8 composites in alcohol-water solutions Construct novel day-night dual reaction centers WO3-FePc photocatalyst for multipollutant degradation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1