{"title":"基于系统可靠性的结构系统抗灾能力加速分析","authors":"Taeyong Kim , Sang-ri Yi","doi":"10.1016/j.strusafe.2024.102479","DOIUrl":null,"url":null,"abstract":"<div><p>Resilience has emerged as a crucial concept for evaluating structural performance under disasters because of its ability to extend beyond traditional risk assessments, accounting for a system’s ability to minimize disruptions and maintain functionality during recovery. To facilitate the holistic understanding of resilience performance in structural systems, a system-reliability-based disaster resilience analysis framework was developed. The framework describes resilience using three criteria: reliability (β), redundancy (π), and recoverability (γ), and the system’s internal resilience is evaluated by inspecting the characteristics of reliability and redundancy for different possible progressive failure modes. However, the practical application of this framework has been limited to complex structures with numerous sub-components, as it becomes intractable to evaluate the performances for all possible initial disruption scenarios. To bridge the gap between the theory and practical use, especially for evaluating reliability and redundancy, this study centers on the idea that the computational burden can be substantially alleviated by focusing on initial disruption scenarios that are practically significant. To achieve this research goal, we propose three methods to efficiently eliminate insignificant scenarios: the sequential search method, the <em>n</em>-ball sampling method, and the surrogate model-based adaptive sampling algorithm. Three numerical examples, including buildings and a bridge, are introduced to prove the applicability and efficiency of the proposed approaches. The findings of this study are expected to offer practical solutions to the challenges of assessing resilience performance in complex structural systems.</p></div>","PeriodicalId":21978,"journal":{"name":"Structural Safety","volume":"109 ","pages":"Article 102479"},"PeriodicalIF":5.7000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerated system-reliability-based disaster resilience analysis for structural systems\",\"authors\":\"Taeyong Kim , Sang-ri Yi\",\"doi\":\"10.1016/j.strusafe.2024.102479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Resilience has emerged as a crucial concept for evaluating structural performance under disasters because of its ability to extend beyond traditional risk assessments, accounting for a system’s ability to minimize disruptions and maintain functionality during recovery. To facilitate the holistic understanding of resilience performance in structural systems, a system-reliability-based disaster resilience analysis framework was developed. The framework describes resilience using three criteria: reliability (β), redundancy (π), and recoverability (γ), and the system’s internal resilience is evaluated by inspecting the characteristics of reliability and redundancy for different possible progressive failure modes. However, the practical application of this framework has been limited to complex structures with numerous sub-components, as it becomes intractable to evaluate the performances for all possible initial disruption scenarios. To bridge the gap between the theory and practical use, especially for evaluating reliability and redundancy, this study centers on the idea that the computational burden can be substantially alleviated by focusing on initial disruption scenarios that are practically significant. To achieve this research goal, we propose three methods to efficiently eliminate insignificant scenarios: the sequential search method, the <em>n</em>-ball sampling method, and the surrogate model-based adaptive sampling algorithm. Three numerical examples, including buildings and a bridge, are introduced to prove the applicability and efficiency of the proposed approaches. The findings of this study are expected to offer practical solutions to the challenges of assessing resilience performance in complex structural systems.</p></div>\",\"PeriodicalId\":21978,\"journal\":{\"name\":\"Structural Safety\",\"volume\":\"109 \",\"pages\":\"Article 102479\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016747302400050X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016747302400050X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Accelerated system-reliability-based disaster resilience analysis for structural systems
Resilience has emerged as a crucial concept for evaluating structural performance under disasters because of its ability to extend beyond traditional risk assessments, accounting for a system’s ability to minimize disruptions and maintain functionality during recovery. To facilitate the holistic understanding of resilience performance in structural systems, a system-reliability-based disaster resilience analysis framework was developed. The framework describes resilience using three criteria: reliability (β), redundancy (π), and recoverability (γ), and the system’s internal resilience is evaluated by inspecting the characteristics of reliability and redundancy for different possible progressive failure modes. However, the practical application of this framework has been limited to complex structures with numerous sub-components, as it becomes intractable to evaluate the performances for all possible initial disruption scenarios. To bridge the gap between the theory and practical use, especially for evaluating reliability and redundancy, this study centers on the idea that the computational burden can be substantially alleviated by focusing on initial disruption scenarios that are practically significant. To achieve this research goal, we propose three methods to efficiently eliminate insignificant scenarios: the sequential search method, the n-ball sampling method, and the surrogate model-based adaptive sampling algorithm. Three numerical examples, including buildings and a bridge, are introduced to prove the applicability and efficiency of the proposed approaches. The findings of this study are expected to offer practical solutions to the challenges of assessing resilience performance in complex structural systems.
期刊介绍:
Structural Safety is an international journal devoted to integrated risk assessment for a wide range of constructed facilities such as buildings, bridges, earth structures, offshore facilities, dams, lifelines and nuclear structural systems. Its purpose is to foster communication about risk and reliability among technical disciplines involved in design and construction, and to enhance the use of risk management in the constructed environment