{"title":"具有一般有界转换率的马尔可夫跳跃时延系统的异步输出反馈量化滑模耗散控制","authors":"Lihuan Han , Yuechao Ma , Yanan Xu","doi":"10.1016/j.ejcon.2024.101017","DOIUrl":null,"url":null,"abstract":"<div><p>This article figures out the asynchronous output feedback sliding mode dissipative control issue for Markovian jump delay systems (MJDSs) with uncertain parameters and external disturbances. Different from the massive methods of constructing sliding mode surfaces (SMS), a new dynamic output feedback (DOF) integral SMS is developed, where the SMS is composed of a virtual controller with quantized output and the controller is asynchronous with the system mode. Meanwhile, the reachability of the SMS is guaranteed. In addition, the transition rates (TRs) considered in this paper are generally bounded, which means that the designed method applies to the more general case of TRs, such as fully known and partially unknown TRs. The sufficient criteria of stochastic stability and strict dissipation for the MJDSs are deduced. The design scheme of the controller gain matrix is proposed by the linear matrix inequality (LMI) technique. Finally, two examples are shown to demonstrate the effectiveness and feasibility of the designed technique.</p></div>","PeriodicalId":50489,"journal":{"name":"European Journal of Control","volume":"78 ","pages":"Article 101017"},"PeriodicalIF":2.5000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asynchronous output feedback quantized sliding mode dissipative control for Markovian jump time-delay systems with generally bounded transition rates\",\"authors\":\"Lihuan Han , Yuechao Ma , Yanan Xu\",\"doi\":\"10.1016/j.ejcon.2024.101017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article figures out the asynchronous output feedback sliding mode dissipative control issue for Markovian jump delay systems (MJDSs) with uncertain parameters and external disturbances. Different from the massive methods of constructing sliding mode surfaces (SMS), a new dynamic output feedback (DOF) integral SMS is developed, where the SMS is composed of a virtual controller with quantized output and the controller is asynchronous with the system mode. Meanwhile, the reachability of the SMS is guaranteed. In addition, the transition rates (TRs) considered in this paper are generally bounded, which means that the designed method applies to the more general case of TRs, such as fully known and partially unknown TRs. The sufficient criteria of stochastic stability and strict dissipation for the MJDSs are deduced. The design scheme of the controller gain matrix is proposed by the linear matrix inequality (LMI) technique. Finally, two examples are shown to demonstrate the effectiveness and feasibility of the designed technique.</p></div>\",\"PeriodicalId\":50489,\"journal\":{\"name\":\"European Journal of Control\",\"volume\":\"78 \",\"pages\":\"Article 101017\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0947358024000773\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0947358024000773","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Asynchronous output feedback quantized sliding mode dissipative control for Markovian jump time-delay systems with generally bounded transition rates
This article figures out the asynchronous output feedback sliding mode dissipative control issue for Markovian jump delay systems (MJDSs) with uncertain parameters and external disturbances. Different from the massive methods of constructing sliding mode surfaces (SMS), a new dynamic output feedback (DOF) integral SMS is developed, where the SMS is composed of a virtual controller with quantized output and the controller is asynchronous with the system mode. Meanwhile, the reachability of the SMS is guaranteed. In addition, the transition rates (TRs) considered in this paper are generally bounded, which means that the designed method applies to the more general case of TRs, such as fully known and partially unknown TRs. The sufficient criteria of stochastic stability and strict dissipation for the MJDSs are deduced. The design scheme of the controller gain matrix is proposed by the linear matrix inequality (LMI) technique. Finally, two examples are shown to demonstrate the effectiveness and feasibility of the designed technique.
期刊介绍:
The European Control Association (EUCA) has among its objectives to promote the development of the discipline. Apart from the European Control Conferences, the European Journal of Control is the Association''s main channel for the dissemination of important contributions in the field.
The aim of the Journal is to publish high quality papers on the theory and practice of control and systems engineering.
The scope of the Journal will be wide and cover all aspects of the discipline including methodologies, techniques and applications.
Research in control and systems engineering is necessary to develop new concepts and tools which enhance our understanding and improve our ability to design and implement high performance control systems. Submitted papers should stress the practical motivations and relevance of their results.
The design and implementation of a successful control system requires the use of a range of techniques:
Modelling
Robustness Analysis
Identification
Optimization
Control Law Design
Numerical analysis
Fault Detection, and so on.