通过可见光发射的高速成像对电感耦合等离子体射流动力学进行多域分析和预测

IF 2.8 2区 工程技术 Q2 ENGINEERING, MECHANICAL Experimental Thermal and Fluid Science Pub Date : 2024-05-13 DOI:10.1016/j.expthermflusci.2024.111232
Lorenzo Capponi, Alberto Padovan, Gregory S. Elliott, Marco Panesi, Daniel J. Bodony, Francesco Panerai
{"title":"通过可见光发射的高速成像对电感耦合等离子体射流动力学进行多域分析和预测","authors":"Lorenzo Capponi,&nbsp;Alberto Padovan,&nbsp;Gregory S. Elliott,&nbsp;Marco Panesi,&nbsp;Daniel J. Bodony,&nbsp;Francesco Panerai","doi":"10.1016/j.expthermflusci.2024.111232","DOIUrl":null,"url":null,"abstract":"<div><p>Inductively coupled plasma wind tunnels are crucial for replicating hypersonic flight conditions in ground testing. Achieving the desired conditions (e.g., stagnation-point heat fluxes and enthalpies during atmospheric reentry) requires a careful selection of operating inputs, such as mass flow, gas composition, nozzle geometry, torch power, chamber pressure, and probing location along the plasma jet. The study presented herein focuses on the influence of the torch power and chamber pressure on the plasma jet dynamics within the 350 kW Plasmatron X ICP facility at the University of Illinois at Urbana-Champaign. A multi-domain analysis of the jet behavior under selected power-pressure conditions is presented in terms of emitted light measurements collected using high-speed imaging. We then use Gaussian Process Regression to develop a data-informed learning framework for predicting Plasmatron X jet profiles at unseen pressure and power test conditions. Understanding the physics behind the dynamics of high-enthalpy flows, particularly plasma jets, is the key to properly design material testing, perform diagnostics, and develop accurate simulation models.</p></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"157 ","pages":"Article 111232"},"PeriodicalIF":2.8000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-domain analysis and prediction of inductively coupled plasma jet dynamics via high-speed imaging of visible light emission\",\"authors\":\"Lorenzo Capponi,&nbsp;Alberto Padovan,&nbsp;Gregory S. Elliott,&nbsp;Marco Panesi,&nbsp;Daniel J. Bodony,&nbsp;Francesco Panerai\",\"doi\":\"10.1016/j.expthermflusci.2024.111232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Inductively coupled plasma wind tunnels are crucial for replicating hypersonic flight conditions in ground testing. Achieving the desired conditions (e.g., stagnation-point heat fluxes and enthalpies during atmospheric reentry) requires a careful selection of operating inputs, such as mass flow, gas composition, nozzle geometry, torch power, chamber pressure, and probing location along the plasma jet. The study presented herein focuses on the influence of the torch power and chamber pressure on the plasma jet dynamics within the 350 kW Plasmatron X ICP facility at the University of Illinois at Urbana-Champaign. A multi-domain analysis of the jet behavior under selected power-pressure conditions is presented in terms of emitted light measurements collected using high-speed imaging. We then use Gaussian Process Regression to develop a data-informed learning framework for predicting Plasmatron X jet profiles at unseen pressure and power test conditions. Understanding the physics behind the dynamics of high-enthalpy flows, particularly plasma jets, is the key to properly design material testing, perform diagnostics, and develop accurate simulation models.</p></div>\",\"PeriodicalId\":12294,\"journal\":{\"name\":\"Experimental Thermal and Fluid Science\",\"volume\":\"157 \",\"pages\":\"Article 111232\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Thermal and Fluid Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0894177724001018\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Thermal and Fluid Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0894177724001018","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

电感耦合等离子体风洞对于在地面测试中复制高超音速飞行条件至关重要。要达到所需的条件(例如重返大气层时的停滞点热流和焓),需要仔细选择操作输入,如质量流、气体成分、喷嘴几何形状、火炬功率、腔室压力和沿等离子体射流的探测位置。本文的研究重点是在伊利诺伊大学厄巴纳-香槟分校的 350 kW Plasmatron X ICP 设备中,火炬功率和腔室压力对等离子体射流动力学的影响。通过高速成像收集的发射光测量数据,对选定功率-压力条件下的射流行为进行了多域分析。然后,我们使用高斯过程回归开发了一个数据信息学习框架,用于预测 Plasmatron X 在未知压力和功率测试条件下的射流剖面。了解高焓流动(尤其是等离子体射流)动力学背后的物理学原理,是正确设计材料测试、执行诊断和开发精确模拟模型的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-domain analysis and prediction of inductively coupled plasma jet dynamics via high-speed imaging of visible light emission

Inductively coupled plasma wind tunnels are crucial for replicating hypersonic flight conditions in ground testing. Achieving the desired conditions (e.g., stagnation-point heat fluxes and enthalpies during atmospheric reentry) requires a careful selection of operating inputs, such as mass flow, gas composition, nozzle geometry, torch power, chamber pressure, and probing location along the plasma jet. The study presented herein focuses on the influence of the torch power and chamber pressure on the plasma jet dynamics within the 350 kW Plasmatron X ICP facility at the University of Illinois at Urbana-Champaign. A multi-domain analysis of the jet behavior under selected power-pressure conditions is presented in terms of emitted light measurements collected using high-speed imaging. We then use Gaussian Process Regression to develop a data-informed learning framework for predicting Plasmatron X jet profiles at unseen pressure and power test conditions. Understanding the physics behind the dynamics of high-enthalpy flows, particularly plasma jets, is the key to properly design material testing, perform diagnostics, and develop accurate simulation models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Thermal and Fluid Science
Experimental Thermal and Fluid Science 工程技术-工程:机械
CiteScore
6.70
自引率
3.10%
发文量
159
审稿时长
34 days
期刊介绍: Experimental Thermal and Fluid Science provides a forum for research emphasizing experimental work that enhances fundamental understanding of heat transfer, thermodynamics, and fluid mechanics. In addition to the principal areas of research, the journal covers research results in related fields, including combined heat and mass transfer, flows with phase transition, micro- and nano-scale systems, multiphase flow, combustion, radiative transfer, porous media, cryogenics, turbulence, and novel experimental techniques.
期刊最新文献
Genetically-based active flow control of a circular cylinder wake via synthetic jets Improvement of a wire-mesh sensor based on the bubble-wire collision kinematics The effect of low swirl configurations on stability limits and emission characteristics in premixed ammonia-methane-air swirling flames Experimental investigation on heated spheres entering water vertically at different temperatures A novel resonant mode drives the dynamics of a large-cavity synthetic jet actuator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1