Faseeh Zaidi, Craig M Goplen, Connor Fitz-Gerald, Scott M Bolam, Michael Hanlon, Jacob T Munro, Andrew P Monk
{"title":"用于全膝关节置换术的新型机械臂辅助系统具有极高的体内精确度。","authors":"Faseeh Zaidi, Craig M Goplen, Connor Fitz-Gerald, Scott M Bolam, Michael Hanlon, Jacob T Munro, Andrew P Monk","doi":"10.1002/ksa.12272","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Robotic-assisted total knee arthroplasty (TKA) has been shown to improve the accuracy and precision of bony resections and implant position. However, the in vivo accuracy of the full surgical workflow has not been widely reported. The primary objective of this study is to determine the accuracy and precision of a robotic-arm-assisted system throughout the intraoperative workflow.</p><p><strong>Methods: </strong>This was a retrospective cohort study of adult patients who underwent primary TKA with various workflows and alignment targets by three arthroplasty-trained surgeons with previous experience using the ROSA® Knee System (Zimmer Biomet) over a 3-month follow-up period. Accuracy and precision were determined by measuring the difference between various workflow time points, including the final preoperative plan (PP), robot-validated (RV) resection angle and postoperative radiographs (PR). The absolute mean difference between the measurements determined accuracy, and the standard deviation represented precision. The lateral distal femoral angle, medial proximal tibial angle, femoral flexion angle and tibial slope were measured on postoperative coronal long-leg radiographs and true short-leg lateral radiographs.</p><p><strong>Results: </strong>A total of 77 patients were included in the final analyses. The accuracy for the coronal femoral angle was 1.62 ± 1.11°, 0.75 ± 0.79° and 1.96 ± 1.29° for the differences between PP and PR, PP and RV and RV and PR. The tibial coronal accuracy was 1.44 ± 1.03°, 0.81 ± 0.67° and 1.57 ± 1.14° for PP/PR, PP/RV and RV/PR, respectively. Femoral flexion accuracy was 1.39 ± 1.05°, 0.83 ± 0.59° and 1.81 ± 1.21° for PP/PR, PP/RV and RV/PR, respectively. Tibial slope accuracy was 0.99 ± 0.72°, 1.19 ± 0.87° and 1.63 ± 1.11°, respectively. The proportion of patients within 3° was 93.2%, 95.3%, 97.3% and 94.6% for the distal femur, proximal tibia, femoral flexion and tibial slope angles when the final intraoperative plan was compared to PRs. No patients had a postoperative complication at the final follow-up.</p><p><strong>Conclusions: </strong>The ROSA Knee System has acceptable accuracy and precision of coronal and sagittal plane resections with few outliers at various steps throughout the platform's entire workflow in vivo.</p><p><strong>Level of evidence: </strong>Level III.</p>","PeriodicalId":17880,"journal":{"name":"Knee Surgery, Sports Traumatology, Arthroscopy","volume":" ","pages":"229-238"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11716351/pdf/","citationCount":"0","resultStr":"{\"title\":\"High in-vivo accuracy of a novel robotic-arm-assisted system for total knee arthroplasty.\",\"authors\":\"Faseeh Zaidi, Craig M Goplen, Connor Fitz-Gerald, Scott M Bolam, Michael Hanlon, Jacob T Munro, Andrew P Monk\",\"doi\":\"10.1002/ksa.12272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Robotic-assisted total knee arthroplasty (TKA) has been shown to improve the accuracy and precision of bony resections and implant position. However, the in vivo accuracy of the full surgical workflow has not been widely reported. The primary objective of this study is to determine the accuracy and precision of a robotic-arm-assisted system throughout the intraoperative workflow.</p><p><strong>Methods: </strong>This was a retrospective cohort study of adult patients who underwent primary TKA with various workflows and alignment targets by three arthroplasty-trained surgeons with previous experience using the ROSA® Knee System (Zimmer Biomet) over a 3-month follow-up period. Accuracy and precision were determined by measuring the difference between various workflow time points, including the final preoperative plan (PP), robot-validated (RV) resection angle and postoperative radiographs (PR). The absolute mean difference between the measurements determined accuracy, and the standard deviation represented precision. The lateral distal femoral angle, medial proximal tibial angle, femoral flexion angle and tibial slope were measured on postoperative coronal long-leg radiographs and true short-leg lateral radiographs.</p><p><strong>Results: </strong>A total of 77 patients were included in the final analyses. The accuracy for the coronal femoral angle was 1.62 ± 1.11°, 0.75 ± 0.79° and 1.96 ± 1.29° for the differences between PP and PR, PP and RV and RV and PR. The tibial coronal accuracy was 1.44 ± 1.03°, 0.81 ± 0.67° and 1.57 ± 1.14° for PP/PR, PP/RV and RV/PR, respectively. Femoral flexion accuracy was 1.39 ± 1.05°, 0.83 ± 0.59° and 1.81 ± 1.21° for PP/PR, PP/RV and RV/PR, respectively. Tibial slope accuracy was 0.99 ± 0.72°, 1.19 ± 0.87° and 1.63 ± 1.11°, respectively. The proportion of patients within 3° was 93.2%, 95.3%, 97.3% and 94.6% for the distal femur, proximal tibia, femoral flexion and tibial slope angles when the final intraoperative plan was compared to PRs. No patients had a postoperative complication at the final follow-up.</p><p><strong>Conclusions: </strong>The ROSA Knee System has acceptable accuracy and precision of coronal and sagittal plane resections with few outliers at various steps throughout the platform's entire workflow in vivo.</p><p><strong>Level of evidence: </strong>Level III.</p>\",\"PeriodicalId\":17880,\"journal\":{\"name\":\"Knee Surgery, Sports Traumatology, Arthroscopy\",\"volume\":\" \",\"pages\":\"229-238\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11716351/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knee Surgery, Sports Traumatology, Arthroscopy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/ksa.12272\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knee Surgery, Sports Traumatology, Arthroscopy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ksa.12272","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
High in-vivo accuracy of a novel robotic-arm-assisted system for total knee arthroplasty.
Purpose: Robotic-assisted total knee arthroplasty (TKA) has been shown to improve the accuracy and precision of bony resections and implant position. However, the in vivo accuracy of the full surgical workflow has not been widely reported. The primary objective of this study is to determine the accuracy and precision of a robotic-arm-assisted system throughout the intraoperative workflow.
Methods: This was a retrospective cohort study of adult patients who underwent primary TKA with various workflows and alignment targets by three arthroplasty-trained surgeons with previous experience using the ROSA® Knee System (Zimmer Biomet) over a 3-month follow-up period. Accuracy and precision were determined by measuring the difference between various workflow time points, including the final preoperative plan (PP), robot-validated (RV) resection angle and postoperative radiographs (PR). The absolute mean difference between the measurements determined accuracy, and the standard deviation represented precision. The lateral distal femoral angle, medial proximal tibial angle, femoral flexion angle and tibial slope were measured on postoperative coronal long-leg radiographs and true short-leg lateral radiographs.
Results: A total of 77 patients were included in the final analyses. The accuracy for the coronal femoral angle was 1.62 ± 1.11°, 0.75 ± 0.79° and 1.96 ± 1.29° for the differences between PP and PR, PP and RV and RV and PR. The tibial coronal accuracy was 1.44 ± 1.03°, 0.81 ± 0.67° and 1.57 ± 1.14° for PP/PR, PP/RV and RV/PR, respectively. Femoral flexion accuracy was 1.39 ± 1.05°, 0.83 ± 0.59° and 1.81 ± 1.21° for PP/PR, PP/RV and RV/PR, respectively. Tibial slope accuracy was 0.99 ± 0.72°, 1.19 ± 0.87° and 1.63 ± 1.11°, respectively. The proportion of patients within 3° was 93.2%, 95.3%, 97.3% and 94.6% for the distal femur, proximal tibia, femoral flexion and tibial slope angles when the final intraoperative plan was compared to PRs. No patients had a postoperative complication at the final follow-up.
Conclusions: The ROSA Knee System has acceptable accuracy and precision of coronal and sagittal plane resections with few outliers at various steps throughout the platform's entire workflow in vivo.
期刊介绍:
Few other areas of orthopedic surgery and traumatology have undergone such a dramatic evolution in the last 10 years as knee surgery, arthroscopy and sports traumatology. Ranked among the top 33% of journals in both Orthopedics and Sports Sciences, the goal of this European journal is to publish papers about innovative knee surgery, sports trauma surgery and arthroscopy. Each issue features a series of peer-reviewed articles that deal with diagnosis and management and with basic research. Each issue also contains at least one review article about an important clinical problem. Case presentations or short notes about technical innovations are also accepted for publication.
The articles cover all aspects of knee surgery and all types of sports trauma; in addition, epidemiology, diagnosis, treatment and prevention, and all types of arthroscopy (not only the knee but also the shoulder, elbow, wrist, hip, ankle, etc.) are addressed. Articles on new diagnostic techniques such as MRI and ultrasound and high-quality articles about the biomechanics of joints, muscles and tendons are included. Although this is largely a clinical journal, it is also open to basic research with clinical relevance.
Because the journal is supported by a distinguished European Editorial Board, assisted by an international Advisory Board, you can be assured that the journal maintains the highest standards.
Official Clinical Journal of the European Society of Sports Traumatology, Knee Surgery and Arthroscopy (ESSKA).