选择与传播:抗生素耐药性中的定量和有机生物学。

IF 2.6 4区 医学 Q3 INFECTIOUS DISEASES Infection Genetics and Evolution Pub Date : 2024-05-19 DOI:10.1016/j.meegid.2024.105606
F. Baquero , A.E. Pérez-Cobas , S. Aracil-Gisbert , T.M. Coque , J. Zamora
{"title":"选择与传播:抗生素耐药性中的定量和有机生物学。","authors":"F. Baquero ,&nbsp;A.E. Pérez-Cobas ,&nbsp;S. Aracil-Gisbert ,&nbsp;T.M. Coque ,&nbsp;J. Zamora","doi":"10.1016/j.meegid.2024.105606","DOIUrl":null,"url":null,"abstract":"<div><p>We aimed to determine the importance of selection (mostly dependent on the anthropogenic use of antimicrobials) and transmission (mostly dependent on hygiene and sanitation) as drivers of the spread of antibiotic-resistant bacterial populations. The first obstacle to estimating the relative weight of both independent variables is the lack of detailed quantitative data concerning the number of bacterial cells, potentially either pathogenic or harmless, and bacterial species exposed to antimicrobial action in the microbiotas of specific environments. The second obstacle is the difficulty of considering the relative importance of the transmission and selection exerting their combined effects on antibiotic resistance across eco-biological levels. As a consequence, advances are urgently required in quantitative biology and organismic biology of antimicrobial resistance. The absolute number of humans exposed to antibiotics and the absolute number of potentially pathogenic and commensal bacteria in their microbiomes should influence both the selection and transmission of resistant bacterial populations. The “whole Earth” microbiome, with astonishingly high numbers of bacterial cells and species, which are also exposed to anthropogenic antimicrobials in various biogeographical spaces, shapes the antibiotic resistance landscape. These biogeographical spaces influence various intensities of selection and transmission of potentially pathogenic bacteria. While waiting for more precise data, biostatistics analysis and mathematical or computational modeling can provide proxies to compare the influence of selection and transmission in resistant bacteria. In European countries with lower sanitation levels, antibiotic consumption plays a major role in increasing antibiotic resistance; however, this is not the case in countries with high sanitation levels. Although both independent variables are linked, their relative influence on the level of antibiotic resistance varies according to the particular location. Therefore, interventions directed to decrease antibiotic resistance should be designed “a la carte” for specific locations with particular ecological conditions, including sanitation facilities.</p></div>","PeriodicalId":54986,"journal":{"name":"Infection Genetics and Evolution","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1567134824000571/pdfft?md5=5a9498a48696fc16e283303e041fd779&pid=1-s2.0-S1567134824000571-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Selection versus transmission: Quantitative and organismic biology in antibiotic resistance\",\"authors\":\"F. Baquero ,&nbsp;A.E. Pérez-Cobas ,&nbsp;S. Aracil-Gisbert ,&nbsp;T.M. Coque ,&nbsp;J. Zamora\",\"doi\":\"10.1016/j.meegid.2024.105606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We aimed to determine the importance of selection (mostly dependent on the anthropogenic use of antimicrobials) and transmission (mostly dependent on hygiene and sanitation) as drivers of the spread of antibiotic-resistant bacterial populations. The first obstacle to estimating the relative weight of both independent variables is the lack of detailed quantitative data concerning the number of bacterial cells, potentially either pathogenic or harmless, and bacterial species exposed to antimicrobial action in the microbiotas of specific environments. The second obstacle is the difficulty of considering the relative importance of the transmission and selection exerting their combined effects on antibiotic resistance across eco-biological levels. As a consequence, advances are urgently required in quantitative biology and organismic biology of antimicrobial resistance. The absolute number of humans exposed to antibiotics and the absolute number of potentially pathogenic and commensal bacteria in their microbiomes should influence both the selection and transmission of resistant bacterial populations. The “whole Earth” microbiome, with astonishingly high numbers of bacterial cells and species, which are also exposed to anthropogenic antimicrobials in various biogeographical spaces, shapes the antibiotic resistance landscape. These biogeographical spaces influence various intensities of selection and transmission of potentially pathogenic bacteria. While waiting for more precise data, biostatistics analysis and mathematical or computational modeling can provide proxies to compare the influence of selection and transmission in resistant bacteria. In European countries with lower sanitation levels, antibiotic consumption plays a major role in increasing antibiotic resistance; however, this is not the case in countries with high sanitation levels. Although both independent variables are linked, their relative influence on the level of antibiotic resistance varies according to the particular location. Therefore, interventions directed to decrease antibiotic resistance should be designed “a la carte” for specific locations with particular ecological conditions, including sanitation facilities.</p></div>\",\"PeriodicalId\":54986,\"journal\":{\"name\":\"Infection Genetics and Evolution\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1567134824000571/pdfft?md5=5a9498a48696fc16e283303e041fd779&pid=1-s2.0-S1567134824000571-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infection Genetics and Evolution\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567134824000571\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection Genetics and Evolution","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567134824000571","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

摘要

我们的目标是确定选择(主要取决于人为使用抗菌素)和传播(主要取决于个人卫生和环境卫生)作为抗生素耐药细菌种群传播驱动因素的重要性。要估算这两个自变量的相对权重,第一个障碍是缺乏有关特定环境微生物群中可能致病或无害的细菌细胞数量以及暴露于抗菌剂作用下的细菌种类的详细定量数据。第二个障碍是难以考虑在不同生态生物水平上传播和选择对抗生素耐药性产生综合影响的相对重要性。因此,抗生素耐药性的定量生物学和有机体生物学亟需取得进展。人类接触抗生素的绝对数量以及微生物组中潜在致病菌和共生菌的绝对数量,都会影响耐药细菌种群的选择和传播。在 "整个地球 "的微生物组中,细菌细胞和物种的数量多得惊人,它们在不同的生物地理空间中也暴露于人为的抗菌素,从而形成了抗生素耐药性景观。这些生物地理空间影响着潜在致病细菌的各种选择和传播强度。在等待更多精确数据的同时,生物统计分析和数学或计算模型可以提供代用指标,以比较选择和传播对耐药细菌的影响。在卫生水平较低的欧洲国家,抗生素消费在增加抗生素耐药性方面发挥着重要作用;但在卫生水平较高的国家,情况并非如此。虽然这两个自变量是相互关联的,但它们对抗生素耐药性水平的相对影响因具体地点而异。因此,应针对特定地区的特定生态条件(包括卫生设施),"按需 "设计旨在降低抗生素耐药性的干预措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Selection versus transmission: Quantitative and organismic biology in antibiotic resistance

We aimed to determine the importance of selection (mostly dependent on the anthropogenic use of antimicrobials) and transmission (mostly dependent on hygiene and sanitation) as drivers of the spread of antibiotic-resistant bacterial populations. The first obstacle to estimating the relative weight of both independent variables is the lack of detailed quantitative data concerning the number of bacterial cells, potentially either pathogenic or harmless, and bacterial species exposed to antimicrobial action in the microbiotas of specific environments. The second obstacle is the difficulty of considering the relative importance of the transmission and selection exerting their combined effects on antibiotic resistance across eco-biological levels. As a consequence, advances are urgently required in quantitative biology and organismic biology of antimicrobial resistance. The absolute number of humans exposed to antibiotics and the absolute number of potentially pathogenic and commensal bacteria in their microbiomes should influence both the selection and transmission of resistant bacterial populations. The “whole Earth” microbiome, with astonishingly high numbers of bacterial cells and species, which are also exposed to anthropogenic antimicrobials in various biogeographical spaces, shapes the antibiotic resistance landscape. These biogeographical spaces influence various intensities of selection and transmission of potentially pathogenic bacteria. While waiting for more precise data, biostatistics analysis and mathematical or computational modeling can provide proxies to compare the influence of selection and transmission in resistant bacteria. In European countries with lower sanitation levels, antibiotic consumption plays a major role in increasing antibiotic resistance; however, this is not the case in countries with high sanitation levels. Although both independent variables are linked, their relative influence on the level of antibiotic resistance varies according to the particular location. Therefore, interventions directed to decrease antibiotic resistance should be designed “a la carte” for specific locations with particular ecological conditions, including sanitation facilities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Infection Genetics and Evolution
Infection Genetics and Evolution 医学-传染病学
CiteScore
8.40
自引率
0.00%
发文量
215
审稿时长
82 days
期刊介绍: (aka Journal of Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases -- MEEGID) Infectious diseases constitute one of the main challenges to medical science in the coming century. The impressive development of molecular megatechnologies and of bioinformatics have greatly increased our knowledge of the evolution, transmission and pathogenicity of infectious diseases. Research has shown that host susceptibility to many infectious diseases has a genetic basis. Furthermore, much is now known on the molecular epidemiology, evolution and virulence of pathogenic agents, as well as their resistance to drugs, vaccines, and antibiotics. Equally, research on the genetics of disease vectors has greatly improved our understanding of their systematics, has increased our capacity to identify target populations for control or intervention, and has provided detailed information on the mechanisms of insecticide resistance. However, the genetics and evolutionary biology of hosts, pathogens and vectors have tended to develop as three separate fields of research. This artificial compartmentalisation is of concern due to our growing appreciation of the strong co-evolutionary interactions among hosts, pathogens and vectors. Infection, Genetics and Evolution and its companion congress [MEEGID](http://www.meegidconference.com/) (for Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases) are the main forum acting for the cross-fertilization between evolutionary science and biomedical research on infectious diseases. Infection, Genetics and Evolution is the only journal that welcomes articles dealing with the genetics and evolutionary biology of hosts, pathogens and vectors, and coevolution processes among them in relation to infection and disease manifestation. All infectious models enter the scope of the journal, including pathogens of humans, animals and plants, either parasites, fungi, bacteria, viruses or prions. The journal welcomes articles dealing with genetics, population genetics, genomics, postgenomics, gene expression, evolutionary biology, population dynamics, mathematical modeling and bioinformatics. We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services .
期刊最新文献
High HIV-1 genetic diversity and low prevalence of transmitted drug resistance among treatment-naive people living with HIV in Madagascar. Discovery of the first sea turtle adenovirus and turtle associated circoviruses. Feline bocaviruses found in Thailand have undergone genetic recombination for their evolutions. Genetic variation and population structure of Taenia multiceps (Coenurus cerebralis) based on mitochondrial cox1 gene: A comprehensive global analysis. Genomic surveillance of dengue virus in Benin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1