{"title":"赖斯纳-诺德斯特伦德西特时空中带电粒子的回转半径","authors":"Ethan J. German, Joseph Sultana","doi":"10.1007/s10714-024-03248-2","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the turnaround radius of the Reissner–Nordström deSitter Spacetime and how the turnaround radius changes if a test particle carries charge. We also consider the Martínez–Troncoso–Zanelli (MTZ) solution of conformally coupled gravity and investigate how the turnaround radius changes for a scalar test charge. In both scalar and electric interaction cases we find that the Turnaround Radius depends on the particle’s energy.\n</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"56 5","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10714-024-03248-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Turnaround Radius for charged particles in the Reissner–Nordström deSitter spacetime\",\"authors\":\"Ethan J. German, Joseph Sultana\",\"doi\":\"10.1007/s10714-024-03248-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate the turnaround radius of the Reissner–Nordström deSitter Spacetime and how the turnaround radius changes if a test particle carries charge. We also consider the Martínez–Troncoso–Zanelli (MTZ) solution of conformally coupled gravity and investigate how the turnaround radius changes for a scalar test charge. In both scalar and electric interaction cases we find that the Turnaround Radius depends on the particle’s energy.\\n</p></div>\",\"PeriodicalId\":578,\"journal\":{\"name\":\"General Relativity and Gravitation\",\"volume\":\"56 5\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10714-024-03248-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General Relativity and Gravitation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10714-024-03248-2\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-024-03248-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Turnaround Radius for charged particles in the Reissner–Nordström deSitter spacetime
We investigate the turnaround radius of the Reissner–Nordström deSitter Spacetime and how the turnaround radius changes if a test particle carries charge. We also consider the Martínez–Troncoso–Zanelli (MTZ) solution of conformally coupled gravity and investigate how the turnaround radius changes for a scalar test charge. In both scalar and electric interaction cases we find that the Turnaround Radius depends on the particle’s energy.
期刊介绍:
General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation.
It welcomes in particular original articles on the following topics of current research:
Analytical general relativity, including its interface with geometrical analysis
Numerical relativity
Theoretical and observational cosmology
Relativistic astrophysics
Gravitational waves: data analysis, astrophysical sources and detector science
Extensions of general relativity
Supergravity
Gravitational aspects of string theory and its extensions
Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations
Quantum field theory in curved spacetime
Non-commutative geometry and gravitation
Experimental gravity, in particular tests of general relativity
The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.