用于量化 ChemCam 火星光谱和实验室光谱中氧化钾的集合方法

IF 3.2 2区 化学 Q1 SPECTROSCOPY Spectrochimica Acta Part B: Atomic Spectroscopy Pub Date : 2024-05-18 DOI:10.1016/j.sab.2024.106945
Mohit Dubey, Diane Oyen, Patrick Gasda
{"title":"用于量化 ChemCam 火星光谱和实验室光谱中氧化钾的集合方法","authors":"Mohit Dubey,&nbsp;Diane Oyen,&nbsp;Patrick Gasda","doi":"10.1016/j.sab.2024.106945","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we test new approaches for predicting the amount of element oxides in rock samples from the ChemCam instrument suite onboard the NASA Curiosity rover by focusing on <span><math><msub><mi>K</mi><mn>2</mn></msub><mi>O</mi></math></span>. Using the expanded dataset compiled by Gasda et al. (2021) with and without the Earth to Mars (E2M and NoE2M) transformation discussed in Clegg et al. (2017) we trained blended submodels using the “double blending” technique and compared these to ensemble methods (Random Forest, ExtraTrees, and Gradient Boosting Regression). We found that ensemble methods performed similar to blended submodels when looking at RMSE-P on the laboratory spectra and provided significant advantages when looking at spectra coming from Mars. For the full model, blended submodels achieved an RMSE-P of 0.62 and 0.60 (E2M and NoE2M respectively) while Gradient Boosting Regression resulted in a slightly improved RMSE-P of 0.59 and 0.60. More importantly, by employing a local RMSE-P estimation technique where model performance is evaluated based on nearby test samples we found that using ensemble methods can lower the quantification limit for <span><math><msub><mi>K</mi><mn>2</mn></msub><mi>O</mi></math></span> from the current value of ≈0.6 wt% to ≈0.08 wt% using Extra Trees and Random Forest. This would allow for a much larger range of <span><math><msub><mi>K</mi><mn>2</mn></msub><mi>O</mi></math></span> values to be quantified on Mars with greater certainty given that most targets seen on Mars tend to have &lt;1 wt% <span><math><msub><mi>K</mi><mn>2</mn></msub><mi>O</mi></math></span>. Finally, we used both Mean Decrease in Impurity (MDI) and permutation importance techniques to investigate the wavelengths used by the ensemble methods and found that they correspond to known potassium emission lines. This suggests that ensemble methods can provide an easier to train and improved alternative to blended submodels for predicting potassium compositions from Laser Induced Breakdown Spectroscopy (LIBS) data.</p></div>","PeriodicalId":21890,"journal":{"name":"Spectrochimica Acta Part B: Atomic Spectroscopy","volume":"216 ","pages":"Article 106945"},"PeriodicalIF":3.2000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ensemble methods for quantification of potassium oxide in ChemCam Mars and laboratory spectra\",\"authors\":\"Mohit Dubey,&nbsp;Diane Oyen,&nbsp;Patrick Gasda\",\"doi\":\"10.1016/j.sab.2024.106945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we test new approaches for predicting the amount of element oxides in rock samples from the ChemCam instrument suite onboard the NASA Curiosity rover by focusing on <span><math><msub><mi>K</mi><mn>2</mn></msub><mi>O</mi></math></span>. Using the expanded dataset compiled by Gasda et al. (2021) with and without the Earth to Mars (E2M and NoE2M) transformation discussed in Clegg et al. (2017) we trained blended submodels using the “double blending” technique and compared these to ensemble methods (Random Forest, ExtraTrees, and Gradient Boosting Regression). We found that ensemble methods performed similar to blended submodels when looking at RMSE-P on the laboratory spectra and provided significant advantages when looking at spectra coming from Mars. For the full model, blended submodels achieved an RMSE-P of 0.62 and 0.60 (E2M and NoE2M respectively) while Gradient Boosting Regression resulted in a slightly improved RMSE-P of 0.59 and 0.60. More importantly, by employing a local RMSE-P estimation technique where model performance is evaluated based on nearby test samples we found that using ensemble methods can lower the quantification limit for <span><math><msub><mi>K</mi><mn>2</mn></msub><mi>O</mi></math></span> from the current value of ≈0.6 wt% to ≈0.08 wt% using Extra Trees and Random Forest. This would allow for a much larger range of <span><math><msub><mi>K</mi><mn>2</mn></msub><mi>O</mi></math></span> values to be quantified on Mars with greater certainty given that most targets seen on Mars tend to have &lt;1 wt% <span><math><msub><mi>K</mi><mn>2</mn></msub><mi>O</mi></math></span>. Finally, we used both Mean Decrease in Impurity (MDI) and permutation importance techniques to investigate the wavelengths used by the ensemble methods and found that they correspond to known potassium emission lines. This suggests that ensemble methods can provide an easier to train and improved alternative to blended submodels for predicting potassium compositions from Laser Induced Breakdown Spectroscopy (LIBS) data.</p></div>\",\"PeriodicalId\":21890,\"journal\":{\"name\":\"Spectrochimica Acta Part B: Atomic Spectroscopy\",\"volume\":\"216 \",\"pages\":\"Article 106945\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectrochimica Acta Part B: Atomic Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0584854724000892\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part B: Atomic Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0584854724000892","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们测试了预测美国宇航局好奇号漫游车搭载的 ChemCam 仪器套件岩石样本中元素氧化物含量的新方法,重点是 K2O。利用Gasda等人(2021年)编制的扩展数据集,以及Clegg等人(2017年)讨论的地球到火星(E2M和NoE2M)转换,我们使用 "双重混合 "技术训练了混合子模型,并将其与集合方法(随机森林、ExtraTrees和梯度提升回归)进行了比较。我们发现,在研究实验室光谱的 RMSE-P 时,集合方法的表现与混合子模型相似,而在研究来自火星的光谱时,集合方法则具有显著优势。对于完整模型,混合子模型的 RMSE-P 分别为 0.62 和 0.60(E2M 和 NoE2M),而梯度提升回归法的 RMSE-P 则略有提高,分别为 0.59 和 0.60。更重要的是,通过采用局部 RMSE-P 估算技术,即根据附近的测试样本来评估模型性能,我们发现使用集合方法可以将 K2O 的定量限值从当前的≈0.6 wt% 降至≈0.08 wt% (使用 Extra Trees 和 Random Forest)。考虑到在火星上看到的大多数目标往往具有 1 wt% 的 K2O,这将允许在更大范围内对火星上的 K2O 值进行量化,并具有更大的确定性。最后,我们使用了平均杂质减少(MDI)和排列重要性技术来研究集合方法所使用的波长,发现它们与已知的钾发射线相对应。这表明,集合方法可以提供一种更易于训练和改进的替代方法,用于从激光诱导击穿光谱(LIBS)数据中预测钾成分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ensemble methods for quantification of potassium oxide in ChemCam Mars and laboratory spectra

In this paper we test new approaches for predicting the amount of element oxides in rock samples from the ChemCam instrument suite onboard the NASA Curiosity rover by focusing on K2O. Using the expanded dataset compiled by Gasda et al. (2021) with and without the Earth to Mars (E2M and NoE2M) transformation discussed in Clegg et al. (2017) we trained blended submodels using the “double blending” technique and compared these to ensemble methods (Random Forest, ExtraTrees, and Gradient Boosting Regression). We found that ensemble methods performed similar to blended submodels when looking at RMSE-P on the laboratory spectra and provided significant advantages when looking at spectra coming from Mars. For the full model, blended submodels achieved an RMSE-P of 0.62 and 0.60 (E2M and NoE2M respectively) while Gradient Boosting Regression resulted in a slightly improved RMSE-P of 0.59 and 0.60. More importantly, by employing a local RMSE-P estimation technique where model performance is evaluated based on nearby test samples we found that using ensemble methods can lower the quantification limit for K2O from the current value of ≈0.6 wt% to ≈0.08 wt% using Extra Trees and Random Forest. This would allow for a much larger range of K2O values to be quantified on Mars with greater certainty given that most targets seen on Mars tend to have <1 wt% K2O. Finally, we used both Mean Decrease in Impurity (MDI) and permutation importance techniques to investigate the wavelengths used by the ensemble methods and found that they correspond to known potassium emission lines. This suggests that ensemble methods can provide an easier to train and improved alternative to blended submodels for predicting potassium compositions from Laser Induced Breakdown Spectroscopy (LIBS) data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.10
自引率
12.10%
发文量
173
审稿时长
81 days
期刊介绍: Spectrochimica Acta Part B: Atomic Spectroscopy, is intended for the rapid publication of both original work and reviews in the following fields: Atomic Emission (AES), Atomic Absorption (AAS) and Atomic Fluorescence (AFS) spectroscopy; Mass Spectrometry (MS) for inorganic analysis covering Spark Source (SS-MS), Inductively Coupled Plasma (ICP-MS), Glow Discharge (GD-MS), and Secondary Ion Mass Spectrometry (SIMS). Laser induced atomic spectroscopy for inorganic analysis, including non-linear optical laser spectroscopy, covering Laser Enhanced Ionization (LEI), Laser Induced Fluorescence (LIF), Resonance Ionization Spectroscopy (RIS) and Resonance Ionization Mass Spectrometry (RIMS); Laser Induced Breakdown Spectroscopy (LIBS); Cavity Ringdown Spectroscopy (CRDS), Laser Ablation Inductively Coupled Plasma Atomic Emission Spectroscopy (LA-ICP-AES) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). X-ray spectrometry, X-ray Optics and Microanalysis, including X-ray fluorescence spectrometry (XRF) and related techniques, in particular Total-reflection X-ray Fluorescence Spectrometry (TXRF), and Synchrotron Radiation-excited Total reflection XRF (SR-TXRF). Manuscripts dealing with (i) fundamentals, (ii) methodology development, (iii)instrumentation, and (iv) applications, can be submitted for publication.
期刊最新文献
Assessment of acupuncture's effectiveness in treating gulf war illness using laser induced breakdown spectroscopy and inductively coupled plasma mass spectrometry Characterization of the distribution of mineral elements in chromium-stressed rice (Oryza sativa L.) leaves based on laser-induced breakdown spectroscopy and data augmentation Rapid determination of 90Sr in seawater using a novel porous crown-based resin and tandem quadrupole ICP-MS/MS in cool plasma and O2-He mode Consideration of spectral interference in total reflection X-ray fluorescence analysis using a limited number of calibration samples: Case study of ocean polymetallic nodules Signal enhancement with double-pulse LIBS on biological samples and better discrimination of tissues through machine learning algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1