基于去噪器的二维超分辨率 MRA 投影

IF 2.9 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE open journal of signal processing Pub Date : 2024-04-26 DOI:10.1109/OJSP.2024.3394369
Jonathan Shani;Tom Tirer;Raja Giryes;Tamir Bendory
{"title":"基于去噪器的二维超分辨率 MRA 投影","authors":"Jonathan Shani;Tom Tirer;Raja Giryes;Tamir Bendory","doi":"10.1109/OJSP.2024.3394369","DOIUrl":null,"url":null,"abstract":"We study the 2D super-resolution multi-reference alignment (SR-MRA) problem: estimating an image from its down-sampled, circularly translated, and noisy copies. The SR-MRA problem serves as a mathematical abstraction of the structure determination problem for biological molecules. Since the SR-MRA problem is ill-posed without prior knowledge, accurate image estimation relies on designing priors that describe the statistics of the images of interest. In this work, we build on recent advances in image processing and harness the power of denoisers as priors for images. To estimate an image, we propose utilizing denoisers as projections and using them within two computational frameworks that we propose: projected expectation-maximization and projected method of moments. We provide an efficient GPU implementation and demonstrate the effectiveness of these algorithms through extensive numerical experiments on a wide range of parameters and images.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"5 ","pages":"621-629"},"PeriodicalIF":2.9000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10508939","citationCount":"0","resultStr":"{\"title\":\"Denoiser-Based Projections for 2D Super-Resolution MRA\",\"authors\":\"Jonathan Shani;Tom Tirer;Raja Giryes;Tamir Bendory\",\"doi\":\"10.1109/OJSP.2024.3394369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the 2D super-resolution multi-reference alignment (SR-MRA) problem: estimating an image from its down-sampled, circularly translated, and noisy copies. The SR-MRA problem serves as a mathematical abstraction of the structure determination problem for biological molecules. Since the SR-MRA problem is ill-posed without prior knowledge, accurate image estimation relies on designing priors that describe the statistics of the images of interest. In this work, we build on recent advances in image processing and harness the power of denoisers as priors for images. To estimate an image, we propose utilizing denoisers as projections and using them within two computational frameworks that we propose: projected expectation-maximization and projected method of moments. We provide an efficient GPU implementation and demonstrate the effectiveness of these algorithms through extensive numerical experiments on a wide range of parameters and images.\",\"PeriodicalId\":73300,\"journal\":{\"name\":\"IEEE open journal of signal processing\",\"volume\":\"5 \",\"pages\":\"621-629\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10508939\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of signal processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10508939/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10508939/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的是二维超分辨率多参考配准(SR-MRA)问题:从图像的下采样、圆周平移和噪声副本中估计图像。SR-MRA 问题是生物分子结构确定问题的数学抽象。由于 SR-MRA 问题在没有先验知识的情况下存在问题,因此准确的图像估计依赖于设计描述相关图像统计信息的先验知识。在这项工作中,我们以图像处理领域的最新进展为基础,利用去噪器的强大功能作为图像的先验知识。为了估算图像,我们建议利用去噪器作为投影,并在我们提出的两个计算框架内使用它们:投影期望最大化和投影矩方法。我们提供了一种高效的 GPU 实现方法,并通过对各种参数和图像的大量数值实验证明了这些算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Denoiser-Based Projections for 2D Super-Resolution MRA
We study the 2D super-resolution multi-reference alignment (SR-MRA) problem: estimating an image from its down-sampled, circularly translated, and noisy copies. The SR-MRA problem serves as a mathematical abstraction of the structure determination problem for biological molecules. Since the SR-MRA problem is ill-posed without prior knowledge, accurate image estimation relies on designing priors that describe the statistics of the images of interest. In this work, we build on recent advances in image processing and harness the power of denoisers as priors for images. To estimate an image, we propose utilizing denoisers as projections and using them within two computational frameworks that we propose: projected expectation-maximization and projected method of moments. We provide an efficient GPU implementation and demonstrate the effectiveness of these algorithms through extensive numerical experiments on a wide range of parameters and images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
期刊最新文献
Robust Estimation of the Covariance Matrix From Data With Outliers Dynamic Sensor Placement Based on Sampling Theory for Graph Signals Adversarial Training for Jamming-Robust Channel Estimation in OFDM Systems Track Coalescence and Repulsion in Multitarget Tracking: An Analysis of MHT, JPDA, and Belief Propagation Methods Impact of Varying Distance-Based Fingerprint Similarity Metrics on Affinity Propagation Clustering Performance in Received Signal Strength-Based Fingerprint Databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1