蓝瓶蝇(双翅目:Calliphora vicina)翅膀形状和大小变化的几何形态计量分析。

IF 1.8 3区 农林科学 Q2 ENTOMOLOGY Environmental Entomology Pub Date : 2024-08-17 DOI:10.1093/ee/nvae018
M Denise Gemmellaro, Elena G Forzisi, Gail S Anderson, George C Hamilton, Lauren M Weidner
{"title":"蓝瓶蝇(双翅目:Calliphora vicina)翅膀形状和大小变化的几何形态计量分析。","authors":"M Denise Gemmellaro, Elena G Forzisi, Gail S Anderson, George C Hamilton, Lauren M Weidner","doi":"10.1093/ee/nvae018","DOIUrl":null,"url":null,"abstract":"<p><p>A geometric morphometric analysis was performed on the right wing of adult Calliphora vicina (Robineau-Desvoidy) collected across 4 altitudinal levels in Sicily. The objective of this study was to assess differences in shape and centroid size (CS) between females and males and across elevations. The wings analyzed in this study were removed from adults of C. vicina collected with baited traps at 20, 700, 1,153, and 1,552; for this study, 19 landmarks were identified in each wing. The coordinates of the landmarks were aligned and superimposed to prevent variations due to position, orientation, and scale; they were then scaled to the same CS and recentered. CS and Procrustes differences were, respectively, used to assess variations in size and shape. Significant differences were observed in wing shape between males and females but not between all altitudinal levels. Female wings were found to be significantly larger than males (P < 0.01). Wings of flies collected at the highest altitudinal level resulted in significantly larger wings than those collected at lower altitudes (P < 0.001), with CS values ranging from 12.1 to 14.1. Variation in wing shape can impact thermal regulation, and therefore, oxygen content, temperature, atmospheric pressure, and solar radiation can have an effect on an insect's body and activity levels. At high elevations and lower temperatures, larger wings could mean less energy expenditure when flying to increase body temperature.</p>","PeriodicalId":11751,"journal":{"name":"Environmental Entomology","volume":" ","pages":"577-586"},"PeriodicalIF":1.8000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329625/pdf/","citationCount":"0","resultStr":"{\"title\":\"A geometric morphometric analysis of wing variations in shape and size of the blue bottle fly, Calliphora vicina (Diptera: Calliphoridae).\",\"authors\":\"M Denise Gemmellaro, Elena G Forzisi, Gail S Anderson, George C Hamilton, Lauren M Weidner\",\"doi\":\"10.1093/ee/nvae018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A geometric morphometric analysis was performed on the right wing of adult Calliphora vicina (Robineau-Desvoidy) collected across 4 altitudinal levels in Sicily. The objective of this study was to assess differences in shape and centroid size (CS) between females and males and across elevations. The wings analyzed in this study were removed from adults of C. vicina collected with baited traps at 20, 700, 1,153, and 1,552; for this study, 19 landmarks were identified in each wing. The coordinates of the landmarks were aligned and superimposed to prevent variations due to position, orientation, and scale; they were then scaled to the same CS and recentered. CS and Procrustes differences were, respectively, used to assess variations in size and shape. Significant differences were observed in wing shape between males and females but not between all altitudinal levels. Female wings were found to be significantly larger than males (P < 0.01). Wings of flies collected at the highest altitudinal level resulted in significantly larger wings than those collected at lower altitudes (P < 0.001), with CS values ranging from 12.1 to 14.1. Variation in wing shape can impact thermal regulation, and therefore, oxygen content, temperature, atmospheric pressure, and solar radiation can have an effect on an insect's body and activity levels. At high elevations and lower temperatures, larger wings could mean less energy expenditure when flying to increase body temperature.</p>\",\"PeriodicalId\":11751,\"journal\":{\"name\":\"Environmental Entomology\",\"volume\":\" \",\"pages\":\"577-586\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329625/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Entomology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/ee/nvae018\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Entomology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/ee/nvae018","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

该研究对在西西里岛 4 个海拔高度收集到的成虫 Calliphora vicina(Robineau-Desvoidy)的右翅进行了几何形态计量分析。这项研究的目的是评估雌性和雄性之间以及不同海拔高度之间在形状和中心尺寸(CS)方面的差异。本研究分析的翅膀是从20、700、1 153和1 552海拔高度的诱饵诱捕器收集的成虫翅膀上取下的;本研究在每个翅膀上确定了19个地标。将地标坐标对齐并叠加,以防止位置、方向和比例引起的变化;然后将它们缩放为相同的 CS 并重新对齐。CS 差和 Procrustes 差分别用于评估大小和形状的变化。观察发现,雌雄之间的翅膀形状存在显著差异,但所有海拔高度之间的差异并不明显。雌性翅膀明显大于雄性(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A geometric morphometric analysis of wing variations in shape and size of the blue bottle fly, Calliphora vicina (Diptera: Calliphoridae).

A geometric morphometric analysis was performed on the right wing of adult Calliphora vicina (Robineau-Desvoidy) collected across 4 altitudinal levels in Sicily. The objective of this study was to assess differences in shape and centroid size (CS) between females and males and across elevations. The wings analyzed in this study were removed from adults of C. vicina collected with baited traps at 20, 700, 1,153, and 1,552; for this study, 19 landmarks were identified in each wing. The coordinates of the landmarks were aligned and superimposed to prevent variations due to position, orientation, and scale; they were then scaled to the same CS and recentered. CS and Procrustes differences were, respectively, used to assess variations in size and shape. Significant differences were observed in wing shape between males and females but not between all altitudinal levels. Female wings were found to be significantly larger than males (P < 0.01). Wings of flies collected at the highest altitudinal level resulted in significantly larger wings than those collected at lower altitudes (P < 0.001), with CS values ranging from 12.1 to 14.1. Variation in wing shape can impact thermal regulation, and therefore, oxygen content, temperature, atmospheric pressure, and solar radiation can have an effect on an insect's body and activity levels. At high elevations and lower temperatures, larger wings could mean less energy expenditure when flying to increase body temperature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Entomology
Environmental Entomology 生物-昆虫学
CiteScore
3.90
自引率
5.90%
发文量
97
审稿时长
3-8 weeks
期刊介绍: Environmental Entomology is published bimonthly in February, April, June, August, October, and December. The journal publishes reports on the interaction of insects with the biological, chemical, and physical aspects of their environment. In addition to research papers, Environmental Entomology publishes Reviews, interpretive articles in a Forum section, and Letters to the Editor.
期刊最新文献
Influence of different diet categories on gut bacterial diversity in Frankliniella occidentalis. A review of non-microbial biological control strategies against the Asian longhorned beetle (Coleoptera: Cerambycidae). Addition of ammonium acetate to torula yeast borax and its effect on captures of three species of economically important fruit flies (Diptera: Tephritidae). Testing the efficacy of Trichogramma ostriniae (Hymenoptera: Trichogrammatidae) as a inundative biological control agent in Western Nebraska. Sex-ratio distortion in a weed biological control agent, Ceratapion basicorne (Coleoptera: Brentidae), associated with a species of Rickettsia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1