1 型糖尿病患者血糖表型的异质性。

IF 8.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Diabetologia Pub Date : 2024-08-01 Epub Date: 2024-05-23 DOI:10.1007/s00125-024-06179-4
Guy Fagherazzi, Gloria A Aguayo, Lu Zhang, Hélène Hanaire, Sylvie Picard, Laura Sablone, Bruno Vergès, Naïma Hamamouche, Bruno Detournay, Michael Joubert, Brigitte Delemer, Isabelle Guilhem, Anne Vambergue, Pierre Gourdy, Samy Hadjadj, Fritz-Line Velayoudom, Bruno Guerci, Etienne Larger, Nathalie Jeandidier, Jean-François Gautier, Eric Renard, Louis Potier, Pierre-Yves Benhamou, Agnès Sola, Lyse Bordier, Elise Bismuth, Gaëtan Prévost, Laurence Kessler, Emmanuel Cosson, Jean-Pierre Riveline
{"title":"1 型糖尿病患者血糖表型的异质性。","authors":"Guy Fagherazzi, Gloria A Aguayo, Lu Zhang, Hélène Hanaire, Sylvie Picard, Laura Sablone, Bruno Vergès, Naïma Hamamouche, Bruno Detournay, Michael Joubert, Brigitte Delemer, Isabelle Guilhem, Anne Vambergue, Pierre Gourdy, Samy Hadjadj, Fritz-Line Velayoudom, Bruno Guerci, Etienne Larger, Nathalie Jeandidier, Jean-François Gautier, Eric Renard, Louis Potier, Pierre-Yves Benhamou, Agnès Sola, Lyse Bordier, Elise Bismuth, Gaëtan Prévost, Laurence Kessler, Emmanuel Cosson, Jean-Pierre Riveline","doi":"10.1007/s00125-024-06179-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims/hypothesis: </strong>Our study aims to uncover glycaemic phenotype heterogeneity in type 1 diabetes.</p><p><strong>Methods: </strong>In the Study of the French-speaking Society of Type 1 Diabetes (SFDT1), we characterised glycaemic heterogeneity thanks to a set of complementary metrics: HbA<sub>1c</sub>, time in range (TIR), time below range (TBR), CV, Gold score and glycaemia risk index (GRI). Applying the Discriminative Dimensionality Reduction with Trees (DDRTree) algorithm, we created a phenotypic tree, i.e. a 2D visual mapping. We also carried out a clustering analysis for comparison.</p><p><strong>Results: </strong>We included 618 participants with type 1 diabetes (52.9% men, mean age 40.6 years [SD 14.1]). Our phenotypic tree identified seven glycaemic phenotypes. The 2D phenotypic tree comprised a main branch in the proximal region and glycaemic phenotypes in the distal areas. Dimension 1, the horizontal dimension, was positively associated with GRI (coefficient [95% CI]) (0.54 [0.52, 0.57]), HbA<sub>1c</sub> (0.39 [0.35, 0.42]), CV (0.24 [0.19, 0.28]) and TBR (0.11 [0.06, 0.15]), and negatively with TIR (-0.52 [-0.54, -0.49]). The vertical dimension was positively associated with TBR (0.41 [0.38, 0.44]), CV (0.40 [0.37, 0.43]), TIR (0.16 [0.12, 0.20]), Gold score (0.10 [0.06, 0.15]) and GRI (0.06 [0.02, 0.11]), and negatively with HbA<sub>1c</sub> (-0.21 [-0.25, -0.17]). Notably, socioeconomic factors, cardiovascular risk indicators, retinopathy and treatment strategy were significant determinants of glycaemic phenotype diversity. The phenotypic tree enabled more granularity than traditional clustering in revealing clinically relevant subgroups of people with type 1 diabetes.</p><p><strong>Conclusions/interpretation: </strong>Our study advances the current understanding of the complex glycaemic profile in people with type 1 diabetes and suggests that strategies based on isolated glycaemic metrics might not capture the complexity of the glycaemic phenotypes in real life. Relying on these phenotypes could improve patient stratification in type 1 diabetes care and personalise disease management.</p>","PeriodicalId":11164,"journal":{"name":"Diabetologia","volume":null,"pages":null},"PeriodicalIF":8.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11343912/pdf/","citationCount":"0","resultStr":"{\"title\":\"Heterogeneity of glycaemic phenotypes in type 1 diabetes.\",\"authors\":\"Guy Fagherazzi, Gloria A Aguayo, Lu Zhang, Hélène Hanaire, Sylvie Picard, Laura Sablone, Bruno Vergès, Naïma Hamamouche, Bruno Detournay, Michael Joubert, Brigitte Delemer, Isabelle Guilhem, Anne Vambergue, Pierre Gourdy, Samy Hadjadj, Fritz-Line Velayoudom, Bruno Guerci, Etienne Larger, Nathalie Jeandidier, Jean-François Gautier, Eric Renard, Louis Potier, Pierre-Yves Benhamou, Agnès Sola, Lyse Bordier, Elise Bismuth, Gaëtan Prévost, Laurence Kessler, Emmanuel Cosson, Jean-Pierre Riveline\",\"doi\":\"10.1007/s00125-024-06179-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims/hypothesis: </strong>Our study aims to uncover glycaemic phenotype heterogeneity in type 1 diabetes.</p><p><strong>Methods: </strong>In the Study of the French-speaking Society of Type 1 Diabetes (SFDT1), we characterised glycaemic heterogeneity thanks to a set of complementary metrics: HbA<sub>1c</sub>, time in range (TIR), time below range (TBR), CV, Gold score and glycaemia risk index (GRI). Applying the Discriminative Dimensionality Reduction with Trees (DDRTree) algorithm, we created a phenotypic tree, i.e. a 2D visual mapping. We also carried out a clustering analysis for comparison.</p><p><strong>Results: </strong>We included 618 participants with type 1 diabetes (52.9% men, mean age 40.6 years [SD 14.1]). Our phenotypic tree identified seven glycaemic phenotypes. The 2D phenotypic tree comprised a main branch in the proximal region and glycaemic phenotypes in the distal areas. Dimension 1, the horizontal dimension, was positively associated with GRI (coefficient [95% CI]) (0.54 [0.52, 0.57]), HbA<sub>1c</sub> (0.39 [0.35, 0.42]), CV (0.24 [0.19, 0.28]) and TBR (0.11 [0.06, 0.15]), and negatively with TIR (-0.52 [-0.54, -0.49]). The vertical dimension was positively associated with TBR (0.41 [0.38, 0.44]), CV (0.40 [0.37, 0.43]), TIR (0.16 [0.12, 0.20]), Gold score (0.10 [0.06, 0.15]) and GRI (0.06 [0.02, 0.11]), and negatively with HbA<sub>1c</sub> (-0.21 [-0.25, -0.17]). Notably, socioeconomic factors, cardiovascular risk indicators, retinopathy and treatment strategy were significant determinants of glycaemic phenotype diversity. The phenotypic tree enabled more granularity than traditional clustering in revealing clinically relevant subgroups of people with type 1 diabetes.</p><p><strong>Conclusions/interpretation: </strong>Our study advances the current understanding of the complex glycaemic profile in people with type 1 diabetes and suggests that strategies based on isolated glycaemic metrics might not capture the complexity of the glycaemic phenotypes in real life. Relying on these phenotypes could improve patient stratification in type 1 diabetes care and personalise disease management.</p>\",\"PeriodicalId\":11164,\"journal\":{\"name\":\"Diabetologia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11343912/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetologia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00125-024-06179-4\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetologia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00125-024-06179-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

目的/假设:我们的研究旨在揭示 1 型糖尿病的血糖表型异质性:在 1 型糖尿病法语区协会研究(SFDT1)中,我们通过一组互补指标来描述血糖异质性:HbA1c、在量程内时间(TIR)、低于量程时间(TBR)、CV、黄金评分和血糖风险指数(GRI)。我们应用树形判别降维(DDRTree)算法创建了表型树,即二维视觉映射。我们还进行了聚类分析以进行比较:我们纳入了 618 名 1 型糖尿病患者(52.9% 为男性,平均年龄 40.6 岁 [SD 14.1])。我们的表型树确定了七种血糖表型。二维表型树包括近端区域的主枝和远端区域的血糖表型。横向维度 1 与 GRI(系数 [95% CI])(0.54 [0.52, 0.57])、HbA1c(0.39 [0.35, 0.42])、CV(0.24 [0.19, 0.28])和 TBR(0.11 [0.06, 0.15])呈正相关,与 TIR(-0.52 [-0.54, -0.49])呈负相关。垂直维度与 TBR (0.41 [0.38, 0.44])、CV (0.40 [0.37, 0.43])、TIR (0.16 [0.12, 0.20])、Gold score (0.10 [0.06, 0.15])和 GRI (0.06 [0.02, 0.11])呈正相关,与 HbA1c (-0.21 [-0.25, -0.17])呈负相关。值得注意的是,社会经济因素、心血管风险指标、视网膜病变和治疗策略是血糖表型多样性的重要决定因素。与传统的聚类方法相比,表型树在揭示与临床相关的 1 型糖尿病患者亚群方面具有更高的精细度:我们的研究加深了目前对 1 型糖尿病患者复杂血糖特征的理解,并表明基于孤立血糖指标的策略可能无法捕捉到现实生活中血糖表型的复杂性。以这些表型为基础可以改善1型糖尿病护理中的患者分层和个性化疾病管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heterogeneity of glycaemic phenotypes in type 1 diabetes.

Aims/hypothesis: Our study aims to uncover glycaemic phenotype heterogeneity in type 1 diabetes.

Methods: In the Study of the French-speaking Society of Type 1 Diabetes (SFDT1), we characterised glycaemic heterogeneity thanks to a set of complementary metrics: HbA1c, time in range (TIR), time below range (TBR), CV, Gold score and glycaemia risk index (GRI). Applying the Discriminative Dimensionality Reduction with Trees (DDRTree) algorithm, we created a phenotypic tree, i.e. a 2D visual mapping. We also carried out a clustering analysis for comparison.

Results: We included 618 participants with type 1 diabetes (52.9% men, mean age 40.6 years [SD 14.1]). Our phenotypic tree identified seven glycaemic phenotypes. The 2D phenotypic tree comprised a main branch in the proximal region and glycaemic phenotypes in the distal areas. Dimension 1, the horizontal dimension, was positively associated with GRI (coefficient [95% CI]) (0.54 [0.52, 0.57]), HbA1c (0.39 [0.35, 0.42]), CV (0.24 [0.19, 0.28]) and TBR (0.11 [0.06, 0.15]), and negatively with TIR (-0.52 [-0.54, -0.49]). The vertical dimension was positively associated with TBR (0.41 [0.38, 0.44]), CV (0.40 [0.37, 0.43]), TIR (0.16 [0.12, 0.20]), Gold score (0.10 [0.06, 0.15]) and GRI (0.06 [0.02, 0.11]), and negatively with HbA1c (-0.21 [-0.25, -0.17]). Notably, socioeconomic factors, cardiovascular risk indicators, retinopathy and treatment strategy were significant determinants of glycaemic phenotype diversity. The phenotypic tree enabled more granularity than traditional clustering in revealing clinically relevant subgroups of people with type 1 diabetes.

Conclusions/interpretation: Our study advances the current understanding of the complex glycaemic profile in people with type 1 diabetes and suggests that strategies based on isolated glycaemic metrics might not capture the complexity of the glycaemic phenotypes in real life. Relying on these phenotypes could improve patient stratification in type 1 diabetes care and personalise disease management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Diabetologia
Diabetologia 医学-内分泌学与代谢
CiteScore
18.10
自引率
2.40%
发文量
193
审稿时长
1 months
期刊介绍: Diabetologia, the authoritative journal dedicated to diabetes research, holds high visibility through society membership, libraries, and social media. As the official journal of the European Association for the Study of Diabetes, it is ranked in the top quartile of the 2019 JCR Impact Factors in the Endocrinology & Metabolism category. The journal boasts dedicated and expert editorial teams committed to supporting authors throughout the peer review process.
期刊最新文献
Addressing methodological considerations in the assessment of the effect of SGLT2 inhibitors and GLP-1 receptor agonists on diabetic eye complications. Reply to Tsai Y-H, Hemphill NO, Kurth T. Diabetes knowledge and behaviour: a cross-sectional study of Jordanian adults. NT-proBNP improves prediction of cardiorenal complications in type 2 diabetes: the Hong Kong Diabetes Biobank Transcriptomic heterogeneity of non-beta islet cells is associated with type 2 diabetes development in mouse models Beta cell extracellular vesicle PD-L1 as a novel regulator of CD8+ T cell activity and biomarker during the evolution of type 1 diabetes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1