Dongze He , Weicheng Li , Vahid Vaziri , Sumeet S. Aphale
{"title":"具有一般边界条件的双参数弹性地基下压电板的热机电振动分析","authors":"Dongze He , Weicheng Li , Vahid Vaziri , Sumeet S. Aphale","doi":"10.1016/j.ijengsci.2024.104057","DOIUrl":null,"url":null,"abstract":"<div><p>The thermo-electro-mechanical vibration characteristics of piezoelectric nanoplates using Kirchhoff and Mindlin plate theories under a two-parameter elastic foundation with general boundary conditions are investigated in this article. Utilizing nonlocal elastic theory, the governing equations of the analytical model, which account for external variable influences, are derived using Hamilton’s principle. In the benchmark case, a wave-based method is employed to analyze the vibration characteristics of the piezoelectric nanoplate with general boundary conditions. Additionally, a series of detailed numerical examples are provided to examine the impact of the nonlocal parameter, external electric voltage, temperature change, biaxial force, Winkler’s modulus parameter, and Pasternak’s modulus parameter on the vibration characteristics of the piezoelectric nanoplate restrained on a two-parameter elastic foundation with general boundary conditions. The accuracy of the calculations is verified, and several conclusions are drawn. This paper aims to expand the numerical analytical range of vibration analysis for nanoplate structures and provide theoretical data for the design of nano-electromechanical systems.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"201 ","pages":"Article 104057"},"PeriodicalIF":5.7000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020722524000417/pdfft?md5=5d5ad74ee60c7bfe38cba3a7b6a5cb7e&pid=1-s2.0-S0020722524000417-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Thermo-electro-mechanical vibration analysis for piezoelectric plates under two-parameter elastic foundation with general boundary conditions\",\"authors\":\"Dongze He , Weicheng Li , Vahid Vaziri , Sumeet S. Aphale\",\"doi\":\"10.1016/j.ijengsci.2024.104057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The thermo-electro-mechanical vibration characteristics of piezoelectric nanoplates using Kirchhoff and Mindlin plate theories under a two-parameter elastic foundation with general boundary conditions are investigated in this article. Utilizing nonlocal elastic theory, the governing equations of the analytical model, which account for external variable influences, are derived using Hamilton’s principle. In the benchmark case, a wave-based method is employed to analyze the vibration characteristics of the piezoelectric nanoplate with general boundary conditions. Additionally, a series of detailed numerical examples are provided to examine the impact of the nonlocal parameter, external electric voltage, temperature change, biaxial force, Winkler’s modulus parameter, and Pasternak’s modulus parameter on the vibration characteristics of the piezoelectric nanoplate restrained on a two-parameter elastic foundation with general boundary conditions. The accuracy of the calculations is verified, and several conclusions are drawn. This paper aims to expand the numerical analytical range of vibration analysis for nanoplate structures and provide theoretical data for the design of nano-electromechanical systems.</p></div>\",\"PeriodicalId\":14053,\"journal\":{\"name\":\"International Journal of Engineering Science\",\"volume\":\"201 \",\"pages\":\"Article 104057\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0020722524000417/pdfft?md5=5d5ad74ee60c7bfe38cba3a7b6a5cb7e&pid=1-s2.0-S0020722524000417-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020722524000417\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722524000417","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Thermo-electro-mechanical vibration analysis for piezoelectric plates under two-parameter elastic foundation with general boundary conditions
The thermo-electro-mechanical vibration characteristics of piezoelectric nanoplates using Kirchhoff and Mindlin plate theories under a two-parameter elastic foundation with general boundary conditions are investigated in this article. Utilizing nonlocal elastic theory, the governing equations of the analytical model, which account for external variable influences, are derived using Hamilton’s principle. In the benchmark case, a wave-based method is employed to analyze the vibration characteristics of the piezoelectric nanoplate with general boundary conditions. Additionally, a series of detailed numerical examples are provided to examine the impact of the nonlocal parameter, external electric voltage, temperature change, biaxial force, Winkler’s modulus parameter, and Pasternak’s modulus parameter on the vibration characteristics of the piezoelectric nanoplate restrained on a two-parameter elastic foundation with general boundary conditions. The accuracy of the calculations is verified, and several conclusions are drawn. This paper aims to expand the numerical analytical range of vibration analysis for nanoplate structures and provide theoretical data for the design of nano-electromechanical systems.
期刊介绍:
The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome.
The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process.
Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.