{"title":"钒基催化剂上甲醇氧化脱氢的详细动力学模型:聚合态作用和活性位点要求","authors":"Gabriel Galdames , Paola Santander , Romel Jiménez , Alejandro Karelovic","doi":"10.1016/j.apcata.2024.119807","DOIUrl":null,"url":null,"abstract":"<div><p>A kinetic model was derived for the methanol oxidative dehydrogenation to formaldehyde, methyl formate and dimethoxymethane on sub-monolayer and multilayer V<sub>2</sub>O<sub>5</sub>/TiO<sub>2</sub> catalysts. Considering a hemiacetal intermediate, the model combines Langmuir-Hinshelwood/Eley-Rideal/Mars-van Krevelen mechanisms, accounting for lattice oxygen redox sites and Brønsted acid sites. The fitted model depends on 4 thermodynamically consistent parameters, adequately simulating yield trends with temperature, residence time, and partial pressure of methanol, oxygen and added water. Oxidation steps follow a Mars-van Krevelen redox cycle, while the dimethoxymethane formation is reversible, as the water addition favored the hemiacetal intermediate. The catalyst with higher vanadia surface density was intrinsically more active (lower activation energy of the rate limiting step), attributed to its higher reducibility, while showing weaker methanol adsorption (lower enthalpy of chemisorption). The increase in reducibility correlates with the transition from monomers to polymers to crystalline vanadia when vanadium content increases, as observed by XRD, Raman spectroscopy and DRS-UV–vis.</p></div>","PeriodicalId":243,"journal":{"name":"Applied Catalysis A: General","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A detailed kinetic model for the methanol oxidative dehydrogenation on vanadia-based catalysts: Aggregation state role and active site requirements\",\"authors\":\"Gabriel Galdames , Paola Santander , Romel Jiménez , Alejandro Karelovic\",\"doi\":\"10.1016/j.apcata.2024.119807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A kinetic model was derived for the methanol oxidative dehydrogenation to formaldehyde, methyl formate and dimethoxymethane on sub-monolayer and multilayer V<sub>2</sub>O<sub>5</sub>/TiO<sub>2</sub> catalysts. Considering a hemiacetal intermediate, the model combines Langmuir-Hinshelwood/Eley-Rideal/Mars-van Krevelen mechanisms, accounting for lattice oxygen redox sites and Brønsted acid sites. The fitted model depends on 4 thermodynamically consistent parameters, adequately simulating yield trends with temperature, residence time, and partial pressure of methanol, oxygen and added water. Oxidation steps follow a Mars-van Krevelen redox cycle, while the dimethoxymethane formation is reversible, as the water addition favored the hemiacetal intermediate. The catalyst with higher vanadia surface density was intrinsically more active (lower activation energy of the rate limiting step), attributed to its higher reducibility, while showing weaker methanol adsorption (lower enthalpy of chemisorption). The increase in reducibility correlates with the transition from monomers to polymers to crystalline vanadia when vanadium content increases, as observed by XRD, Raman spectroscopy and DRS-UV–vis.</p></div>\",\"PeriodicalId\":243,\"journal\":{\"name\":\"Applied Catalysis A: General\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Catalysis A: General\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926860X24002515\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis A: General","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926860X24002515","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A detailed kinetic model for the methanol oxidative dehydrogenation on vanadia-based catalysts: Aggregation state role and active site requirements
A kinetic model was derived for the methanol oxidative dehydrogenation to formaldehyde, methyl formate and dimethoxymethane on sub-monolayer and multilayer V2O5/TiO2 catalysts. Considering a hemiacetal intermediate, the model combines Langmuir-Hinshelwood/Eley-Rideal/Mars-van Krevelen mechanisms, accounting for lattice oxygen redox sites and Brønsted acid sites. The fitted model depends on 4 thermodynamically consistent parameters, adequately simulating yield trends with temperature, residence time, and partial pressure of methanol, oxygen and added water. Oxidation steps follow a Mars-van Krevelen redox cycle, while the dimethoxymethane formation is reversible, as the water addition favored the hemiacetal intermediate. The catalyst with higher vanadia surface density was intrinsically more active (lower activation energy of the rate limiting step), attributed to its higher reducibility, while showing weaker methanol adsorption (lower enthalpy of chemisorption). The increase in reducibility correlates with the transition from monomers to polymers to crystalline vanadia when vanadium content increases, as observed by XRD, Raman spectroscopy and DRS-UV–vis.
期刊介绍:
Applied Catalysis A: General publishes original papers on all aspects of catalysis of basic and practical interest to chemical scientists in both industrial and academic fields, with an emphasis onnew understanding of catalysts and catalytic reactions, new catalytic materials, new techniques, and new processes, especially those that have potential practical implications.
Papers that report results of a thorough study or optimization of systems or processes that are well understood, widely studied, or minor variations of known ones are discouraged. Authors should include statements in a separate section "Justification for Publication" of how the manuscript fits the scope of the journal in the cover letter to the editors. Submissions without such justification will be rejected without review.