钒基催化剂上甲醇氧化脱氢的详细动力学模型:聚合态作用和活性位点要求

IF 4.7 2区 化学 Q2 CHEMISTRY, PHYSICAL Applied Catalysis A: General Pub Date : 2024-05-20 DOI:10.1016/j.apcata.2024.119807
Gabriel Galdames , Paola Santander , Romel Jiménez , Alejandro Karelovic
{"title":"钒基催化剂上甲醇氧化脱氢的详细动力学模型:聚合态作用和活性位点要求","authors":"Gabriel Galdames ,&nbsp;Paola Santander ,&nbsp;Romel Jiménez ,&nbsp;Alejandro Karelovic","doi":"10.1016/j.apcata.2024.119807","DOIUrl":null,"url":null,"abstract":"<div><p>A kinetic model was derived for the methanol oxidative dehydrogenation to formaldehyde, methyl formate and dimethoxymethane on sub-monolayer and multilayer V<sub>2</sub>O<sub>5</sub>/TiO<sub>2</sub> catalysts. Considering a hemiacetal intermediate, the model combines Langmuir-Hinshelwood/Eley-Rideal/Mars-van Krevelen mechanisms, accounting for lattice oxygen redox sites and Brønsted acid sites. The fitted model depends on 4 thermodynamically consistent parameters, adequately simulating yield trends with temperature, residence time, and partial pressure of methanol, oxygen and added water. Oxidation steps follow a Mars-van Krevelen redox cycle, while the dimethoxymethane formation is reversible, as the water addition favored the hemiacetal intermediate. The catalyst with higher vanadia surface density was intrinsically more active (lower activation energy of the rate limiting step), attributed to its higher reducibility, while showing weaker methanol adsorption (lower enthalpy of chemisorption). The increase in reducibility correlates with the transition from monomers to polymers to crystalline vanadia when vanadium content increases, as observed by XRD, Raman spectroscopy and DRS-UV–vis.</p></div>","PeriodicalId":243,"journal":{"name":"Applied Catalysis A: General","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A detailed kinetic model for the methanol oxidative dehydrogenation on vanadia-based catalysts: Aggregation state role and active site requirements\",\"authors\":\"Gabriel Galdames ,&nbsp;Paola Santander ,&nbsp;Romel Jiménez ,&nbsp;Alejandro Karelovic\",\"doi\":\"10.1016/j.apcata.2024.119807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A kinetic model was derived for the methanol oxidative dehydrogenation to formaldehyde, methyl formate and dimethoxymethane on sub-monolayer and multilayer V<sub>2</sub>O<sub>5</sub>/TiO<sub>2</sub> catalysts. Considering a hemiacetal intermediate, the model combines Langmuir-Hinshelwood/Eley-Rideal/Mars-van Krevelen mechanisms, accounting for lattice oxygen redox sites and Brønsted acid sites. The fitted model depends on 4 thermodynamically consistent parameters, adequately simulating yield trends with temperature, residence time, and partial pressure of methanol, oxygen and added water. Oxidation steps follow a Mars-van Krevelen redox cycle, while the dimethoxymethane formation is reversible, as the water addition favored the hemiacetal intermediate. The catalyst with higher vanadia surface density was intrinsically more active (lower activation energy of the rate limiting step), attributed to its higher reducibility, while showing weaker methanol adsorption (lower enthalpy of chemisorption). The increase in reducibility correlates with the transition from monomers to polymers to crystalline vanadia when vanadium content increases, as observed by XRD, Raman spectroscopy and DRS-UV–vis.</p></div>\",\"PeriodicalId\":243,\"journal\":{\"name\":\"Applied Catalysis A: General\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Catalysis A: General\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926860X24002515\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis A: General","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926860X24002515","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

针对甲醇在亚单层和多层 V2O5/TiO2 催化剂上氧化脱氢生成甲醛、甲酸甲酯和二甲氧基甲烷的过程,推导出了一个动力学模型。考虑到半缩醛中间体,该模型结合了 Langmuir-Hinshelwood/Eley-Rideal/Mars-van Krevelen 机制,并考虑了晶格氧氧化还原位点和布氏酸位点。拟合模型取决于 4 个热力学上一致的参数,充分模拟了产量随温度、停留时间以及甲醇、氧气和添加水的分压而变化的趋势。氧化步骤遵循 Mars-van Krevelen 氧化还原循环,而二甲氧基甲烷的形成是可逆的,因为水的加入有利于半缩醛中间体。具有较高凡纳迪亚表面密度的催化剂本质上更活跃(限制速率步骤的活化能较低),这归因于其较高的还原性,同时显示出较弱的甲醇吸附性(较低的化学吸附焓)。通过 XRD、拉曼光谱和 DRS-UV-vis 观察到,当钒含量增加时,还原性的增加与从单体到聚合物再到结晶钒钛的转变相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A detailed kinetic model for the methanol oxidative dehydrogenation on vanadia-based catalysts: Aggregation state role and active site requirements

A kinetic model was derived for the methanol oxidative dehydrogenation to formaldehyde, methyl formate and dimethoxymethane on sub-monolayer and multilayer V2O5/TiO2 catalysts. Considering a hemiacetal intermediate, the model combines Langmuir-Hinshelwood/Eley-Rideal/Mars-van Krevelen mechanisms, accounting for lattice oxygen redox sites and Brønsted acid sites. The fitted model depends on 4 thermodynamically consistent parameters, adequately simulating yield trends with temperature, residence time, and partial pressure of methanol, oxygen and added water. Oxidation steps follow a Mars-van Krevelen redox cycle, while the dimethoxymethane formation is reversible, as the water addition favored the hemiacetal intermediate. The catalyst with higher vanadia surface density was intrinsically more active (lower activation energy of the rate limiting step), attributed to its higher reducibility, while showing weaker methanol adsorption (lower enthalpy of chemisorption). The increase in reducibility correlates with the transition from monomers to polymers to crystalline vanadia when vanadium content increases, as observed by XRD, Raman spectroscopy and DRS-UV–vis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Catalysis A: General
Applied Catalysis A: General 化学-环境科学
CiteScore
9.00
自引率
5.50%
发文量
415
审稿时长
24 days
期刊介绍: Applied Catalysis A: General publishes original papers on all aspects of catalysis of basic and practical interest to chemical scientists in both industrial and academic fields, with an emphasis onnew understanding of catalysts and catalytic reactions, new catalytic materials, new techniques, and new processes, especially those that have potential practical implications. Papers that report results of a thorough study or optimization of systems or processes that are well understood, widely studied, or minor variations of known ones are discouraged. Authors should include statements in a separate section "Justification for Publication" of how the manuscript fits the scope of the journal in the cover letter to the editors. Submissions without such justification will be rejected without review.
期刊最新文献
Innovative synthesis of graphdiyne@Pd material using acetylene gas promotes hydrogen evolution performance of Zn0.5Cd0.5S heterojunction Insights into the physicochemical property modification on the product distribution of CO2 hydrogenation over heteroatom doped Na-Fe/ZrO2 catalysts Effects of surfactants on the sulfurization and hydrogenation activities of Anderson-type Co-Mo heteropolyacid catalysts Effect of the nature of iron precursors on the activity of Fe-containing catalysts in CO2 conversion Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1