Banghua Zhu;Ziao Wang;Nadim Ghaddar;Jiantao Jiao;Lele Wang
{"title":"OR 和 MAX 函数的噪声计算","authors":"Banghua Zhu;Ziao Wang;Nadim Ghaddar;Jiantao Jiao;Lele Wang","doi":"10.1109/JSAIT.2024.3396787","DOIUrl":null,"url":null,"abstract":"We consider the problem of computing a function of n variables using noisy queries, where each query is incorrect with some fixed and known probability \n<inline-formula> <tex-math>$p \\in (0,1/2)$ </tex-math></inline-formula>\n. Specifically, we consider the computation of the \n<inline-formula> <tex-math>$\\textsf {OR}$ </tex-math></inline-formula>\n function of n bits (where queries correspond to noisy readings of the bits) and the \n<inline-formula> <tex-math>$\\textsf {MAX}$ </tex-math></inline-formula>\n function of n real numbers (where queries correspond to noisy pairwise comparisons). We show that an expected number of queries of \n<inline-formula> <tex-math>$(1 \\pm o(1)) {}\\frac {n\\log {}\\frac {1}{\\delta }}{D_{\\textsf {KL}}(p \\| 1-p)}$ </tex-math></inline-formula>\n is both sufficient and necessary to compute both functions with a vanishing error probability \n<inline-formula> <tex-math>$\\delta = o(1)$ </tex-math></inline-formula>\n, where \n<inline-formula> <tex-math>$D_{\\textsf {KL}}(p \\| 1-p)$ </tex-math></inline-formula>\n denotes the Kullback-Leibler divergence between \n<inline-formula> <tex-math>$\\textsf {Bern}(p)$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$\\textsf {Bern}(1-p)$ </tex-math></inline-formula>\n distributions. Compared to previous work, our results tighten the dependence on p in both the upper and lower bounds for the two functions.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"5 ","pages":"302-313"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noisy Computing of the OR and MAX Functions\",\"authors\":\"Banghua Zhu;Ziao Wang;Nadim Ghaddar;Jiantao Jiao;Lele Wang\",\"doi\":\"10.1109/JSAIT.2024.3396787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of computing a function of n variables using noisy queries, where each query is incorrect with some fixed and known probability \\n<inline-formula> <tex-math>$p \\\\in (0,1/2)$ </tex-math></inline-formula>\\n. Specifically, we consider the computation of the \\n<inline-formula> <tex-math>$\\\\textsf {OR}$ </tex-math></inline-formula>\\n function of n bits (where queries correspond to noisy readings of the bits) and the \\n<inline-formula> <tex-math>$\\\\textsf {MAX}$ </tex-math></inline-formula>\\n function of n real numbers (where queries correspond to noisy pairwise comparisons). We show that an expected number of queries of \\n<inline-formula> <tex-math>$(1 \\\\pm o(1)) {}\\\\frac {n\\\\log {}\\\\frac {1}{\\\\delta }}{D_{\\\\textsf {KL}}(p \\\\| 1-p)}$ </tex-math></inline-formula>\\n is both sufficient and necessary to compute both functions with a vanishing error probability \\n<inline-formula> <tex-math>$\\\\delta = o(1)$ </tex-math></inline-formula>\\n, where \\n<inline-formula> <tex-math>$D_{\\\\textsf {KL}}(p \\\\| 1-p)$ </tex-math></inline-formula>\\n denotes the Kullback-Leibler divergence between \\n<inline-formula> <tex-math>$\\\\textsf {Bern}(p)$ </tex-math></inline-formula>\\n and \\n<inline-formula> <tex-math>$\\\\textsf {Bern}(1-p)$ </tex-math></inline-formula>\\n distributions. Compared to previous work, our results tighten the dependence on p in both the upper and lower bounds for the two functions.\",\"PeriodicalId\":73295,\"journal\":{\"name\":\"IEEE journal on selected areas in information theory\",\"volume\":\"5 \",\"pages\":\"302-313\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in information theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10520706/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10520706/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑的问题是使用噪声查询计算 n 个变量的函数,其中每个查询都是不正确的,其概率是固定且已知的 $p \ in (0,1/2)$。具体来说,我们考虑计算 n 个比特的 $\textsf {OR}$ 函数(其中查询对应于比特的噪声读数)和 n 个实数的 $\textsf {MAX}$ 函数(其中查询对应于噪声成对比较)。我们证明,$(1 \pm o(1)) {}\frac {n\log {}\frac {1}\{delta }}{D_{\textsf {KL}}(p \| 1-p)}$ 的预期查询次数对于以消失的错误概率 $\delta = o(1)$ 计算这两个函数来说既充分又必要、其中,$D_{\textsf {KL}}(p \| 1-p)$ 表示 $\textsf {Bern}(p)$ 和 $\textsf {Bern}(1-p)$ 分布之间的库尔贝-莱布勒发散。与之前的工作相比,我们的结果在两个函数的上界和下界中都加强了对 p 的依赖。
We consider the problem of computing a function of n variables using noisy queries, where each query is incorrect with some fixed and known probability
$p \in (0,1/2)$
. Specifically, we consider the computation of the
$\textsf {OR}$
function of n bits (where queries correspond to noisy readings of the bits) and the
$\textsf {MAX}$
function of n real numbers (where queries correspond to noisy pairwise comparisons). We show that an expected number of queries of
$(1 \pm o(1)) {}\frac {n\log {}\frac {1}{\delta }}{D_{\textsf {KL}}(p \| 1-p)}$
is both sufficient and necessary to compute both functions with a vanishing error probability
$\delta = o(1)$
, where
$D_{\textsf {KL}}(p \| 1-p)$
denotes the Kullback-Leibler divergence between
$\textsf {Bern}(p)$
and
$\textsf {Bern}(1-p)$
distributions. Compared to previous work, our results tighten the dependence on p in both the upper and lower bounds for the two functions.