人工智能知识库实现了对纳米酶多重催化活性的透明预测。

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry Letters Pub Date : 2024-05-23 DOI:10.1021/acs.jpclett.4c00959
Julia Razlivina, Andrei Dmitrenko* and Vladimir Vinogradov*, 
{"title":"人工智能知识库实现了对纳米酶多重催化活性的透明预测。","authors":"Julia Razlivina,&nbsp;Andrei Dmitrenko* and Vladimir Vinogradov*,&nbsp;","doi":"10.1021/acs.jpclett.4c00959","DOIUrl":null,"url":null,"abstract":"<p >Nanozymes are unique materials with many valuable properties for applications in biomedicine, biosensing, environmental monitoring, and beyond. In this work, we developed a machine learning (ML) approach to search for new nanozymes and deployed a web platform, DiZyme, featuring a state-of-the-art database of nanozymes containing 1210 experimental samples, catalytic activity prediction, and DiZyme Assistant interface powered by a large language model (LLM). For the first time, we enable the prediction of multiple catalytic activities of nanozymes by training an ensemble learning algorithm achieving <i>R</i><sup>2</sup> = 0.75 for the Michaelis–Menten constant and <i>R</i><sup>2</sup> = 0.77 for the maximum velocity on unseen test data. We envision an accurate prediction of multiple catalytic activities (peroxidase, oxidase, and catalase) promoting novel applications for a wide range of surface-modified inorganic nanozymes. The DiZyme Assistant based on the ChatGPT model provides users with supporting information on experimental samples, such as synthesis procedures, measurement protocols, etc. DiZyme (dizyme.aicidlab.itmo.ru) is now openly available worldwide.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"15 22","pages":"5804–5813"},"PeriodicalIF":4.8000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-Powered Knowledge Base Enables Transparent Prediction of Nanozyme Multiple Catalytic Activity\",\"authors\":\"Julia Razlivina,&nbsp;Andrei Dmitrenko* and Vladimir Vinogradov*,&nbsp;\",\"doi\":\"10.1021/acs.jpclett.4c00959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Nanozymes are unique materials with many valuable properties for applications in biomedicine, biosensing, environmental monitoring, and beyond. In this work, we developed a machine learning (ML) approach to search for new nanozymes and deployed a web platform, DiZyme, featuring a state-of-the-art database of nanozymes containing 1210 experimental samples, catalytic activity prediction, and DiZyme Assistant interface powered by a large language model (LLM). For the first time, we enable the prediction of multiple catalytic activities of nanozymes by training an ensemble learning algorithm achieving <i>R</i><sup>2</sup> = 0.75 for the Michaelis–Menten constant and <i>R</i><sup>2</sup> = 0.77 for the maximum velocity on unseen test data. We envision an accurate prediction of multiple catalytic activities (peroxidase, oxidase, and catalase) promoting novel applications for a wide range of surface-modified inorganic nanozymes. The DiZyme Assistant based on the ChatGPT model provides users with supporting information on experimental samples, such as synthesis procedures, measurement protocols, etc. DiZyme (dizyme.aicidlab.itmo.ru) is now openly available worldwide.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"15 22\",\"pages\":\"5804–5813\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.4c00959\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.4c00959","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

纳米酶是一种独特的材料,具有许多宝贵的特性,可应用于生物医学、生物传感、环境监测等领域。在这项工作中,我们开发了一种机器学习(ML)方法来搜索新的纳米酶,并部署了一个网络平台 DiZyme,该平台拥有一个包含 1210 个实验样本的最先进的纳米酶数据库、催化活性预测以及由大型语言模型(LLM)驱动的 DiZyme 助手界面。通过训练一种集合学习算法,我们首次实现了对纳米酶多种催化活性的预测,在未见测试数据的情况下,Michaelis-Menten 常数的 R2 = 0.75,最大速度的 R2 = 0.77。我们设想对多种催化活性(过氧化物酶、氧化酶和过氧化氢酶)进行准确预测,从而促进各种表面修饰无机纳米酶的新型应用。基于 ChatGPT 模型的 DiZyme 助手可为用户提供实验样本的辅助信息,如合成程序、测量方案等。DiZyme (dizyme.aicidlab.itmo.ru)现已在全球公开发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AI-Powered Knowledge Base Enables Transparent Prediction of Nanozyme Multiple Catalytic Activity

Nanozymes are unique materials with many valuable properties for applications in biomedicine, biosensing, environmental monitoring, and beyond. In this work, we developed a machine learning (ML) approach to search for new nanozymes and deployed a web platform, DiZyme, featuring a state-of-the-art database of nanozymes containing 1210 experimental samples, catalytic activity prediction, and DiZyme Assistant interface powered by a large language model (LLM). For the first time, we enable the prediction of multiple catalytic activities of nanozymes by training an ensemble learning algorithm achieving R2 = 0.75 for the Michaelis–Menten constant and R2 = 0.77 for the maximum velocity on unseen test data. We envision an accurate prediction of multiple catalytic activities (peroxidase, oxidase, and catalase) promoting novel applications for a wide range of surface-modified inorganic nanozymes. The DiZyme Assistant based on the ChatGPT model provides users with supporting information on experimental samples, such as synthesis procedures, measurement protocols, etc. DiZyme (dizyme.aicidlab.itmo.ru) is now openly available worldwide.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
期刊最新文献
Gas Adsorption on the Co2Te3 Monolayer: Density Functional Theory Study Spin Dynamics in Hybrid Halide Perovskites - Effect of Dynamical and Permanent Symmetry Breaking. Issue Publication Information Issue Editorial Masthead Magnetic Circular Dichroism of Luminescent Triarylmethyl Radicals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1