Yan Chun Chen, Jin Zheng, Fan Zhou, Xin Wei Tao, Qian Chen, Yun Feng, Yun Yan Su, Yu Zhang, Tongyuan Liu, Chang Sheng Zhou, Chun Xiang Tang, Jonathan Weir-McCall, Zhongzhao Teng, Long Jiang Zhang
{"title":"基于冠状动脉 CTA 的血管放射组学预测左心室心肌桥近端动脉粥样硬化的发展情况","authors":"Yan Chun Chen, Jin Zheng, Fan Zhou, Xin Wei Tao, Qian Chen, Yun Feng, Yun Yan Su, Yu Zhang, Tongyuan Liu, Chang Sheng Zhou, Chun Xiang Tang, Jonathan Weir-McCall, Zhongzhao Teng, Long Jiang Zhang","doi":"10.1093/ehjci/jeae135","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Cardiac cycle morphological changes can accelerate plaque growth proximal to myocardial bridging (MB) in the left anterior descending artery (LAD). To assess coronary computed tomography angiography (CCTA)-based vascular radiomics for predicting proximal plaque development in LAD MB.</p><p><strong>Methods and results: </strong>Patients with repeated CCTA scans showing LAD MB without proximal plaque in index CCTA were included from Jinling Hospital as a development set. They were divided into training and internal testing in an 8:2 ratio. Patients from four other tertiary hospitals were set as external validation set. The endpoint was proximal plaque development of LAD MB in follow-up CCTA. Four vascular radiomics models were built: MB centreline (MB CL), proximal MB CL (pMB CL), MB cross-section (MB CS), and proximal MB CS (pMB CS), whose performances were evaluated using area under the receiver operating characteristic curve (AUC), integrated discrimination improvement (IDI), and net reclassification improvement (NRI). In total, 295 patients were included in the development (n = 192; median age, 54 ± 11 years; 137 men) and external validation sets (n = 103; median age, 57 ± 9 years; 57 men). The pMB CS vascular radiomics model exhibited higher AUCs in training, internal test, and external sets (AUC = 0.78, 0.75, 0.75) than the clinical and anatomical model (all P < 0.05). Integration of the pMB CS vascular radiomics model significantly raised the AUC of the clinical and anatomical model from 0.56 to 0.75 (P = 0.002), along with enhanced NRI [0.76 (0.37-1.14), P < 0.001] and IDI [0.17 (0.07-0.26), P < 0.001] in the external validation set.</p><p><strong>Conclusion: </strong>The CCTA-based pMB CS vascular radiomics model can predict plaque development in LAD MB.</p>","PeriodicalId":12026,"journal":{"name":"European Heart Journal - Cardiovascular Imaging","volume":" ","pages":"1462-1471"},"PeriodicalIF":6.7000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coronary CTA-based vascular radiomics predicts atherosclerosis development proximal to LAD myocardial bridging.\",\"authors\":\"Yan Chun Chen, Jin Zheng, Fan Zhou, Xin Wei Tao, Qian Chen, Yun Feng, Yun Yan Su, Yu Zhang, Tongyuan Liu, Chang Sheng Zhou, Chun Xiang Tang, Jonathan Weir-McCall, Zhongzhao Teng, Long Jiang Zhang\",\"doi\":\"10.1093/ehjci/jeae135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Cardiac cycle morphological changes can accelerate plaque growth proximal to myocardial bridging (MB) in the left anterior descending artery (LAD). To assess coronary computed tomography angiography (CCTA)-based vascular radiomics for predicting proximal plaque development in LAD MB.</p><p><strong>Methods and results: </strong>Patients with repeated CCTA scans showing LAD MB without proximal plaque in index CCTA were included from Jinling Hospital as a development set. They were divided into training and internal testing in an 8:2 ratio. Patients from four other tertiary hospitals were set as external validation set. The endpoint was proximal plaque development of LAD MB in follow-up CCTA. Four vascular radiomics models were built: MB centreline (MB CL), proximal MB CL (pMB CL), MB cross-section (MB CS), and proximal MB CS (pMB CS), whose performances were evaluated using area under the receiver operating characteristic curve (AUC), integrated discrimination improvement (IDI), and net reclassification improvement (NRI). In total, 295 patients were included in the development (n = 192; median age, 54 ± 11 years; 137 men) and external validation sets (n = 103; median age, 57 ± 9 years; 57 men). The pMB CS vascular radiomics model exhibited higher AUCs in training, internal test, and external sets (AUC = 0.78, 0.75, 0.75) than the clinical and anatomical model (all P < 0.05). Integration of the pMB CS vascular radiomics model significantly raised the AUC of the clinical and anatomical model from 0.56 to 0.75 (P = 0.002), along with enhanced NRI [0.76 (0.37-1.14), P < 0.001] and IDI [0.17 (0.07-0.26), P < 0.001] in the external validation set.</p><p><strong>Conclusion: </strong>The CCTA-based pMB CS vascular radiomics model can predict plaque development in LAD MB.</p>\",\"PeriodicalId\":12026,\"journal\":{\"name\":\"European Heart Journal - Cardiovascular Imaging\",\"volume\":\" \",\"pages\":\"1462-1471\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Heart Journal - Cardiovascular Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/ehjci/jeae135\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Heart Journal - Cardiovascular Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/ehjci/jeae135","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Coronary CTA-based vascular radiomics predicts atherosclerosis development proximal to LAD myocardial bridging.
Aims: Cardiac cycle morphological changes can accelerate plaque growth proximal to myocardial bridging (MB) in the left anterior descending artery (LAD). To assess coronary computed tomography angiography (CCTA)-based vascular radiomics for predicting proximal plaque development in LAD MB.
Methods and results: Patients with repeated CCTA scans showing LAD MB without proximal plaque in index CCTA were included from Jinling Hospital as a development set. They were divided into training and internal testing in an 8:2 ratio. Patients from four other tertiary hospitals were set as external validation set. The endpoint was proximal plaque development of LAD MB in follow-up CCTA. Four vascular radiomics models were built: MB centreline (MB CL), proximal MB CL (pMB CL), MB cross-section (MB CS), and proximal MB CS (pMB CS), whose performances were evaluated using area under the receiver operating characteristic curve (AUC), integrated discrimination improvement (IDI), and net reclassification improvement (NRI). In total, 295 patients were included in the development (n = 192; median age, 54 ± 11 years; 137 men) and external validation sets (n = 103; median age, 57 ± 9 years; 57 men). The pMB CS vascular radiomics model exhibited higher AUCs in training, internal test, and external sets (AUC = 0.78, 0.75, 0.75) than the clinical and anatomical model (all P < 0.05). Integration of the pMB CS vascular radiomics model significantly raised the AUC of the clinical and anatomical model from 0.56 to 0.75 (P = 0.002), along with enhanced NRI [0.76 (0.37-1.14), P < 0.001] and IDI [0.17 (0.07-0.26), P < 0.001] in the external validation set.
Conclusion: The CCTA-based pMB CS vascular radiomics model can predict plaque development in LAD MB.
期刊介绍:
European Heart Journal – Cardiovascular Imaging is a monthly international peer reviewed journal dealing with Cardiovascular Imaging. It is an official publication of the European Association of Cardiovascular Imaging, a branch of the European Society of Cardiology.
The journal aims to publish the highest quality material, both scientific and clinical from all areas of cardiovascular imaging including echocardiography, magnetic resonance, computed tomography, nuclear and invasive imaging. A range of article types will be considered, including original research, reviews, editorials, image focus, letters and recommendation papers from relevant groups of the European Society of Cardiology. In addition it provides a forum for the exchange of information on all aspects of cardiovascular imaging.