能降解多酚 C-糖基化和黄酮类化合物的人体肠道细菌--卡替尼杆菌的基因组学和生理学。

IF 4 2区 生物学 Q1 GENETICS & HEREDITY Microbial Genomics Pub Date : 2024-05-01 DOI:10.1099/mgen.0.001245
Tobias Goris, Annett Braune
{"title":"能降解多酚 C-糖基化和黄酮类化合物的人体肠道细菌--卡替尼杆菌的基因组学和生理学。","authors":"Tobias Goris, Annett Braune","doi":"10.1099/mgen.0.001245","DOIUrl":null,"url":null,"abstract":"<p><p>The genus <i>Catenibacillus</i> (family <i>Lachnospiraceae</i>, phylum <i>Bacillota</i>) includes only one cultivated species so far, <i>Catenibacillus scindens,</i> isolated from human faeces and capable of deglycosylating dietary polyphenols and degrading flavonoid aglycones. Another human intestinal <i>Catenibacillus</i> strain not taxonomically resolved at that time was recently genome-sequenced. We analysed the genome of this novel isolate, designated <i>Catenibacillus decagia</i>, and showed its ability to deglycosylate <i>C</i>-coupled flavone and xanthone glucosides and <i>O</i>-coupled flavonoid glycosides. Most of the resulting aglycones were further degraded to the corresponding phenolic acids. Including the recently sequenced genome of <i>C. scindens</i> and ten faecal metagenome-assembled genomes assigned to the genus <i>Catenibacillus</i>, we performed a comparative genome analysis and searched for genes encoding potential <i>C</i>-glycosidases and other polyphenol-converting enzymes. According to genome data and physiological characterization, the core metabolism of <i>Catenibacillus</i> strains is based on a fermentative lifestyle with butyrate production and hydrogen evolution. Both <i>C. scindens</i> and <i>C. decagia</i> encode a flavonoid <i>O</i>-glycosidase, a flavone reductase, a flavanone/flavanonol-cleaving reductase and a phloretin hydrolase. Several gene clusters encode enzymes similar to those of the flavonoid <i>C</i>-deglycosylation system of <i>Dorea</i> strain PUE (DgpBC), while separately located genes encode putative polyphenol-glucoside oxidases (DgpA) required for <i>C</i>-deglycosylation. The diversity of <i>dgpA</i> and <i>dgpBC</i> gene clusters might explain the broad <i>C</i>-glycoside substrate spectrum of <i>C. scindens</i> and <i>C. decagia</i>. The other <i>Catenibacillus</i> genomes encode only a few potential flavonoid-converting enzymes. Our results indicate that several <i>Catenibacillus</i> species are well-equipped to deglycosylate and degrade dietary plant polyphenols and might inhabit a corresponding, specific niche in the gut.</p>","PeriodicalId":18487,"journal":{"name":"Microbial Genomics","volume":"10 5","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11170127/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genomics and physiology of <i>Catenibacillus</i>, human gut bacteria capable of polyphenol <i>C</i>-deglycosylation and flavonoid degradation.\",\"authors\":\"Tobias Goris, Annett Braune\",\"doi\":\"10.1099/mgen.0.001245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The genus <i>Catenibacillus</i> (family <i>Lachnospiraceae</i>, phylum <i>Bacillota</i>) includes only one cultivated species so far, <i>Catenibacillus scindens,</i> isolated from human faeces and capable of deglycosylating dietary polyphenols and degrading flavonoid aglycones. Another human intestinal <i>Catenibacillus</i> strain not taxonomically resolved at that time was recently genome-sequenced. We analysed the genome of this novel isolate, designated <i>Catenibacillus decagia</i>, and showed its ability to deglycosylate <i>C</i>-coupled flavone and xanthone glucosides and <i>O</i>-coupled flavonoid glycosides. Most of the resulting aglycones were further degraded to the corresponding phenolic acids. Including the recently sequenced genome of <i>C. scindens</i> and ten faecal metagenome-assembled genomes assigned to the genus <i>Catenibacillus</i>, we performed a comparative genome analysis and searched for genes encoding potential <i>C</i>-glycosidases and other polyphenol-converting enzymes. According to genome data and physiological characterization, the core metabolism of <i>Catenibacillus</i> strains is based on a fermentative lifestyle with butyrate production and hydrogen evolution. Both <i>C. scindens</i> and <i>C. decagia</i> encode a flavonoid <i>O</i>-glycosidase, a flavone reductase, a flavanone/flavanonol-cleaving reductase and a phloretin hydrolase. Several gene clusters encode enzymes similar to those of the flavonoid <i>C</i>-deglycosylation system of <i>Dorea</i> strain PUE (DgpBC), while separately located genes encode putative polyphenol-glucoside oxidases (DgpA) required for <i>C</i>-deglycosylation. The diversity of <i>dgpA</i> and <i>dgpBC</i> gene clusters might explain the broad <i>C</i>-glycoside substrate spectrum of <i>C. scindens</i> and <i>C. decagia</i>. The other <i>Catenibacillus</i> genomes encode only a few potential flavonoid-converting enzymes. Our results indicate that several <i>Catenibacillus</i> species are well-equipped to deglycosylate and degrade dietary plant polyphenols and might inhabit a corresponding, specific niche in the gut.</p>\",\"PeriodicalId\":18487,\"journal\":{\"name\":\"Microbial Genomics\",\"volume\":\"10 5\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11170127/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1099/mgen.0.001245\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mgen.0.001245","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

卡替尼杆菌属(Lachnospiraceae 科,芽孢杆菌门)迄今只包括一个栽培种,即从人类粪便中分离出来的辛登卡替尼杆菌(Catenibacillus scindens),它能够使食物中的多酚发生脱糖作用,并降解黄酮类苷元。最近,我们对另一株当时尚未在分类学上得到解决的人类肠道卡替尼杆菌进行了基因组测序。我们分析了这一新分离菌株(命名为Catenibacillus decagia)的基因组,发现它能够降解C-偶联黄酮和黄酮苷以及O-偶联黄酮苷。所产生的大部分苷元可进一步降解为相应的酚酸。包括最近测序的 C. scindens 基因组和归入卡替尼杆菌属的 10 个粪便元基因组,我们进行了基因组比较分析,寻找编码潜在的 C-糖苷酶和其他多酚转化酶的基因。根据基因组数据和生理学特征,卡替尼杆菌菌株的核心新陈代谢以发酵生活方式为基础,产生丁酸和氢气。C. scindens 和 C. decagia 都编码一种黄酮 O-糖苷酶、一种黄酮还原酶、一种黄酮/黄烷醇裂解还原酶和一种花青素水解酶。几个基因簇编码的酶与多雷氏菌株 PUE(DgpBC)的类黄酮 C-糖基化系统的酶相似,而单独定位的基因编码 C-糖基化所需的假定多酚-葡萄糖苷氧化酶(DgpA)。dgpA 和 dgpBC 基因簇的多样性可能解释了 C. scindens 和 C. decagia 广泛的 C-糖苷底物谱。其他卡替尼杆菌基因组只编码少数几种潜在的类黄酮转化酶。我们的研究结果表明,有几种卡替尼杆菌具有很好的能力来脱糖和降解食物中的植物多酚,并可能在肠道中占据相应的特定位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genomics and physiology of Catenibacillus, human gut bacteria capable of polyphenol C-deglycosylation and flavonoid degradation.

The genus Catenibacillus (family Lachnospiraceae, phylum Bacillota) includes only one cultivated species so far, Catenibacillus scindens, isolated from human faeces and capable of deglycosylating dietary polyphenols and degrading flavonoid aglycones. Another human intestinal Catenibacillus strain not taxonomically resolved at that time was recently genome-sequenced. We analysed the genome of this novel isolate, designated Catenibacillus decagia, and showed its ability to deglycosylate C-coupled flavone and xanthone glucosides and O-coupled flavonoid glycosides. Most of the resulting aglycones were further degraded to the corresponding phenolic acids. Including the recently sequenced genome of C. scindens and ten faecal metagenome-assembled genomes assigned to the genus Catenibacillus, we performed a comparative genome analysis and searched for genes encoding potential C-glycosidases and other polyphenol-converting enzymes. According to genome data and physiological characterization, the core metabolism of Catenibacillus strains is based on a fermentative lifestyle with butyrate production and hydrogen evolution. Both C. scindens and C. decagia encode a flavonoid O-glycosidase, a flavone reductase, a flavanone/flavanonol-cleaving reductase and a phloretin hydrolase. Several gene clusters encode enzymes similar to those of the flavonoid C-deglycosylation system of Dorea strain PUE (DgpBC), while separately located genes encode putative polyphenol-glucoside oxidases (DgpA) required for C-deglycosylation. The diversity of dgpA and dgpBC gene clusters might explain the broad C-glycoside substrate spectrum of C. scindens and C. decagia. The other Catenibacillus genomes encode only a few potential flavonoid-converting enzymes. Our results indicate that several Catenibacillus species are well-equipped to deglycosylate and degrade dietary plant polyphenols and might inhabit a corresponding, specific niche in the gut.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial Genomics
Microbial Genomics Medicine-Epidemiology
CiteScore
6.60
自引率
2.60%
发文量
153
审稿时长
12 weeks
期刊介绍: Microbial Genomics (MGen) is a fully open access, mandatory open data and peer-reviewed journal publishing high-profile original research on archaea, bacteria, microbial eukaryotes and viruses.
期刊最新文献
Longitudinal genomic surveillance of a UK intensive care unit shows a lack of patient colonisation by multi-drug-resistant Gram-negative bacterial pathogens. Characterization of psychrotrophic and thermoduric bacteria in raw milk using a multi-omics approach. Chromosome architecture as a determinant for biosynthetic diversity in Micromonospora. Genomic diversity of Campylobacter jejuni and Campylobacter coli isolates recovered from human and poultry in Australia and New Zealand, 2017 to 2019. Identifying gene-level mechanisms of successful dispersal of Vibrio parahaemolyticus during El Niño events.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1