Michael J Hanley, Steven Zhang, Robert Griffin, Sean Xiaochun Zhu, Robert J Fram, Jianchang Lin, Karthik Venkatakrishnan, Neeraj Gupta
{"title":"这是一项 1 期研究,旨在评估健康参与者体内表皮生长因子受体外显子 20 插入突变口服抑制剂 [14C]-mobocertinib 的绝对生物利用度、质量平衡、药代动力学、代谢和排泄情况。","authors":"Michael J Hanley, Steven Zhang, Robert Griffin, Sean Xiaochun Zhu, Robert J Fram, Jianchang Lin, Karthik Venkatakrishnan, Neeraj Gupta","doi":"10.1007/s10637-024-01446-y","DOIUrl":null,"url":null,"abstract":"<p><p>Mobocertinib (TAK-788) is a first-in-class oral epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that received accelerated approval for the treatment of patients with non-small cell lung cancer with EGFR exon 20 insertion mutations previously treated with platinum-based chemotherapy. This phase 1, 2-period, study was conducted to assess the absolute bioavailability of mobocertinib (Period 1), as well as mass balance, pharmacokinetics, metabolism, and excretion of [<sup>14</sup>C]-mobocertinib (Period 2) in healthy adult males. In Period 1, participants received a single oral capsule dose of 160 mg mobocertinib, followed by a 15-minute intravenous infusion of 50 µg (~ 2 µCi) [<sup>14</sup>C]-mobocertinib administered from 3.75 to 4 h after the capsule dose. In Period 2, a single oral dose of 160 mg (~ 100 µCi) [<sup>14</sup>C]-mobocertinib was administered as an oral solution. The geometric mean absolute bioavailability of mobocertinib was determined to be 36.7%. After oral administration of [<sup>14</sup>C]-mobocertinib, mobocertinib and its active metabolites, AP32960 and AP32914, were minor components in plasma, accounting for only 0.275% of total plasma radioactivity as the majority of mobocertinib-related material was covalently bound to plasma proteins. The geometric mean percentage of the administered radioactive dose recovered in the urine and feces was 3.57% and 76.0%, respectively. Only 0.39% of the oral dose of [<sup>14</sup>C]-mobocertinib was recovered in the urine as mobocertinib; thus, indicating that renal excretion of unchanged drug was a very minor pathway of elimination. In both treatment periods, mobocertinib was generally safe and well-tolerated as all adverse events were Grade 1 in severity. (Trial registration number ClinicalTrials.gov NCT03811834. Registration date January 22, 2019).</p>","PeriodicalId":14513,"journal":{"name":"Investigational New Drugs","volume":" ","pages":"343-352"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11327196/pdf/","citationCount":"0","resultStr":"{\"title\":\"A phase 1 study to assess the absolute bioavailability, mass balance, pharmacokinetics, metabolism, and excretion of [<sup>14</sup>C]-mobocertinib, an oral inhibitor of EGFR exon 20 insertion mutations, in healthy participants.\",\"authors\":\"Michael J Hanley, Steven Zhang, Robert Griffin, Sean Xiaochun Zhu, Robert J Fram, Jianchang Lin, Karthik Venkatakrishnan, Neeraj Gupta\",\"doi\":\"10.1007/s10637-024-01446-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mobocertinib (TAK-788) is a first-in-class oral epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that received accelerated approval for the treatment of patients with non-small cell lung cancer with EGFR exon 20 insertion mutations previously treated with platinum-based chemotherapy. This phase 1, 2-period, study was conducted to assess the absolute bioavailability of mobocertinib (Period 1), as well as mass balance, pharmacokinetics, metabolism, and excretion of [<sup>14</sup>C]-mobocertinib (Period 2) in healthy adult males. In Period 1, participants received a single oral capsule dose of 160 mg mobocertinib, followed by a 15-minute intravenous infusion of 50 µg (~ 2 µCi) [<sup>14</sup>C]-mobocertinib administered from 3.75 to 4 h after the capsule dose. In Period 2, a single oral dose of 160 mg (~ 100 µCi) [<sup>14</sup>C]-mobocertinib was administered as an oral solution. The geometric mean absolute bioavailability of mobocertinib was determined to be 36.7%. After oral administration of [<sup>14</sup>C]-mobocertinib, mobocertinib and its active metabolites, AP32960 and AP32914, were minor components in plasma, accounting for only 0.275% of total plasma radioactivity as the majority of mobocertinib-related material was covalently bound to plasma proteins. The geometric mean percentage of the administered radioactive dose recovered in the urine and feces was 3.57% and 76.0%, respectively. Only 0.39% of the oral dose of [<sup>14</sup>C]-mobocertinib was recovered in the urine as mobocertinib; thus, indicating that renal excretion of unchanged drug was a very minor pathway of elimination. In both treatment periods, mobocertinib was generally safe and well-tolerated as all adverse events were Grade 1 in severity. (Trial registration number ClinicalTrials.gov NCT03811834. Registration date January 22, 2019).</p>\",\"PeriodicalId\":14513,\"journal\":{\"name\":\"Investigational New Drugs\",\"volume\":\" \",\"pages\":\"343-352\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11327196/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Investigational New Drugs\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10637-024-01446-y\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigational New Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10637-024-01446-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
A phase 1 study to assess the absolute bioavailability, mass balance, pharmacokinetics, metabolism, and excretion of [14C]-mobocertinib, an oral inhibitor of EGFR exon 20 insertion mutations, in healthy participants.
Mobocertinib (TAK-788) is a first-in-class oral epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that received accelerated approval for the treatment of patients with non-small cell lung cancer with EGFR exon 20 insertion mutations previously treated with platinum-based chemotherapy. This phase 1, 2-period, study was conducted to assess the absolute bioavailability of mobocertinib (Period 1), as well as mass balance, pharmacokinetics, metabolism, and excretion of [14C]-mobocertinib (Period 2) in healthy adult males. In Period 1, participants received a single oral capsule dose of 160 mg mobocertinib, followed by a 15-minute intravenous infusion of 50 µg (~ 2 µCi) [14C]-mobocertinib administered from 3.75 to 4 h after the capsule dose. In Period 2, a single oral dose of 160 mg (~ 100 µCi) [14C]-mobocertinib was administered as an oral solution. The geometric mean absolute bioavailability of mobocertinib was determined to be 36.7%. After oral administration of [14C]-mobocertinib, mobocertinib and its active metabolites, AP32960 and AP32914, were minor components in plasma, accounting for only 0.275% of total plasma radioactivity as the majority of mobocertinib-related material was covalently bound to plasma proteins. The geometric mean percentage of the administered radioactive dose recovered in the urine and feces was 3.57% and 76.0%, respectively. Only 0.39% of the oral dose of [14C]-mobocertinib was recovered in the urine as mobocertinib; thus, indicating that renal excretion of unchanged drug was a very minor pathway of elimination. In both treatment periods, mobocertinib was generally safe and well-tolerated as all adverse events were Grade 1 in severity. (Trial registration number ClinicalTrials.gov NCT03811834. Registration date January 22, 2019).
期刊介绍:
The development of new anticancer agents is one of the most rapidly changing aspects of cancer research. Investigational New Drugs provides a forum for the rapid dissemination of information on new anticancer agents. The papers published are of interest to the medical chemist, toxicologist, pharmacist, pharmacologist, biostatistician and clinical oncologist. Investigational New Drugs provides the fastest possible publication of new discoveries and results for the whole community of scientists developing anticancer agents.