{"title":"调整激光功率,控制纳米粒子在患者细胞部位产生的热量。","authors":"Seyed Ehsan Razavi, Hamed Khodadadi, Masoud Goharimanesh","doi":"10.1049/syb2.12093","DOIUrl":null,"url":null,"abstract":"<p>Cancer treatment often involves heat therapy, commonly administered alongside chemotherapy and radiation therapy. The authors address the challenges posed by heat treatment methods and introduce effective control techniques. These approaches enable the precise adjustment of laser radiation over time, ensuring the tumour's core temperature attains an acceptable level with a well-defined transient response. In these control strategies, the input is the actual tumour temperature compared to the desired value, while the output governs laser radiation power. Efficient control methods are explored for regulating tumour temperature in the presence of nanoparticles and laser radiation, validated through simulations on a relevant physiological model. Initially, a Proportional-Integral-Derivative (PID) controller serves as the foundational compensator. The PID controller parameters are optimised using a combination of trial and error and the Imperialist Competitive Algorithm (ICA). ICA, known for its swift convergence and reduced computational complexity, proves instrumental in parameter determination. Furthermore, an intelligent controller based on an artificial neural network is integrated with the PID controller and compared against alternative methods. Simulation results underscore the efficacy of the combined neural network-PID controller in achieving precise temperature control. This comprehensive study illuminates promising avenues for enhancing heat therapy's effectiveness in cancer treatment.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.12093","citationCount":"0","resultStr":"{\"title\":\"Adjusting laser power to control the heat generated by nanoparticles at the site of a patient's cells\",\"authors\":\"Seyed Ehsan Razavi, Hamed Khodadadi, Masoud Goharimanesh\",\"doi\":\"10.1049/syb2.12093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cancer treatment often involves heat therapy, commonly administered alongside chemotherapy and radiation therapy. The authors address the challenges posed by heat treatment methods and introduce effective control techniques. These approaches enable the precise adjustment of laser radiation over time, ensuring the tumour's core temperature attains an acceptable level with a well-defined transient response. In these control strategies, the input is the actual tumour temperature compared to the desired value, while the output governs laser radiation power. Efficient control methods are explored for regulating tumour temperature in the presence of nanoparticles and laser radiation, validated through simulations on a relevant physiological model. Initially, a Proportional-Integral-Derivative (PID) controller serves as the foundational compensator. The PID controller parameters are optimised using a combination of trial and error and the Imperialist Competitive Algorithm (ICA). ICA, known for its swift convergence and reduced computational complexity, proves instrumental in parameter determination. Furthermore, an intelligent controller based on an artificial neural network is integrated with the PID controller and compared against alternative methods. Simulation results underscore the efficacy of the combined neural network-PID controller in achieving precise temperature control. This comprehensive study illuminates promising avenues for enhancing heat therapy's effectiveness in cancer treatment.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.12093\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12093\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12093","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Adjusting laser power to control the heat generated by nanoparticles at the site of a patient's cells
Cancer treatment often involves heat therapy, commonly administered alongside chemotherapy and radiation therapy. The authors address the challenges posed by heat treatment methods and introduce effective control techniques. These approaches enable the precise adjustment of laser radiation over time, ensuring the tumour's core temperature attains an acceptable level with a well-defined transient response. In these control strategies, the input is the actual tumour temperature compared to the desired value, while the output governs laser radiation power. Efficient control methods are explored for regulating tumour temperature in the presence of nanoparticles and laser radiation, validated through simulations on a relevant physiological model. Initially, a Proportional-Integral-Derivative (PID) controller serves as the foundational compensator. The PID controller parameters are optimised using a combination of trial and error and the Imperialist Competitive Algorithm (ICA). ICA, known for its swift convergence and reduced computational complexity, proves instrumental in parameter determination. Furthermore, an intelligent controller based on an artificial neural network is integrated with the PID controller and compared against alternative methods. Simulation results underscore the efficacy of the combined neural network-PID controller in achieving precise temperature control. This comprehensive study illuminates promising avenues for enhancing heat therapy's effectiveness in cancer treatment.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.