{"title":"利用内在指标计算 3-RPR 机械手的奇点距离","authors":"Aditya Kapilavai, Georg Nawratil","doi":"10.1016/j.cagd.2024.102343","DOIUrl":null,"url":null,"abstract":"<div><p>Avoiding singularities is a crucial task in robotics and path planning. This paper proposes a novel algorithm for detecting the closest singularity to a given pose for nine interpretations of the 3-RPR manipulator. The algorithm utilizes intrinsic metrics based on the framework's total elastic strain energy density, employing the physical concept of Green-Lagrange strain. The constrained optimization problem for detecting the closest singular configuration with respect to these metrics is solved globally using tools from numerical algebraic geometry implemented in the software package <span>Bertini</span>. The effectiveness of the proposed algorithm is demonstrated on a 3-RPR manipulator executing a one-parametric motion. Additionally, the obtained intrinsic singularity distances are compared with extrinsic metrics. Finally, the paper illustrates the advantage of employing a well-defined metric for identifying the closest singularities in comparison with the existing methods in the literature, highlighting its application in design optimization.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102343"},"PeriodicalIF":1.3000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167839624000773/pdfft?md5=7aaa62823b27cbe61f490d7566678c2e&pid=1-s2.0-S0167839624000773-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Singularity distance computations for 3-RPR manipulators using intrinsic metrics\",\"authors\":\"Aditya Kapilavai, Georg Nawratil\",\"doi\":\"10.1016/j.cagd.2024.102343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Avoiding singularities is a crucial task in robotics and path planning. This paper proposes a novel algorithm for detecting the closest singularity to a given pose for nine interpretations of the 3-RPR manipulator. The algorithm utilizes intrinsic metrics based on the framework's total elastic strain energy density, employing the physical concept of Green-Lagrange strain. The constrained optimization problem for detecting the closest singular configuration with respect to these metrics is solved globally using tools from numerical algebraic geometry implemented in the software package <span>Bertini</span>. The effectiveness of the proposed algorithm is demonstrated on a 3-RPR manipulator executing a one-parametric motion. Additionally, the obtained intrinsic singularity distances are compared with extrinsic metrics. Finally, the paper illustrates the advantage of employing a well-defined metric for identifying the closest singularities in comparison with the existing methods in the literature, highlighting its application in design optimization.</p></div>\",\"PeriodicalId\":55226,\"journal\":{\"name\":\"Computer Aided Geometric Design\",\"volume\":\"111 \",\"pages\":\"Article 102343\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167839624000773/pdfft?md5=7aaa62823b27cbe61f490d7566678c2e&pid=1-s2.0-S0167839624000773-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Aided Geometric Design\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167839624000773\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Aided Geometric Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167839624000773","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Singularity distance computations for 3-RPR manipulators using intrinsic metrics
Avoiding singularities is a crucial task in robotics and path planning. This paper proposes a novel algorithm for detecting the closest singularity to a given pose for nine interpretations of the 3-RPR manipulator. The algorithm utilizes intrinsic metrics based on the framework's total elastic strain energy density, employing the physical concept of Green-Lagrange strain. The constrained optimization problem for detecting the closest singular configuration with respect to these metrics is solved globally using tools from numerical algebraic geometry implemented in the software package Bertini. The effectiveness of the proposed algorithm is demonstrated on a 3-RPR manipulator executing a one-parametric motion. Additionally, the obtained intrinsic singularity distances are compared with extrinsic metrics. Finally, the paper illustrates the advantage of employing a well-defined metric for identifying the closest singularities in comparison with the existing methods in the literature, highlighting its application in design optimization.
期刊介绍:
The journal Computer Aided Geometric Design is for researchers, scholars, and software developers dealing with mathematical and computational methods for the description of geometric objects as they arise in areas ranging from CAD/CAM to robotics and scientific visualization. The journal publishes original research papers, survey papers and with quick editorial decisions short communications of at most 3 pages. The primary objects of interest are curves, surfaces, and volumes such as splines (NURBS), meshes, subdivision surfaces as well as algorithms to generate, analyze, and manipulate them. This journal will report on new developments in CAGD and its applications, including but not restricted to the following:
-Mathematical and Geometric Foundations-
Curve, Surface, and Volume generation-
CAGD applications in Numerical Analysis, Computational Geometry, Computer Graphics, or Computer Vision-
Industrial, medical, and scientific applications.
The aim is to collect and disseminate information on computer aided design in one journal. To provide the user community with methods and algorithms for representing curves and surfaces. To illustrate computer aided geometric design by means of interesting applications. To combine curve and surface methods with computer graphics. To explain scientific phenomena by means of computer graphics. To concentrate on the interaction between theory and application. To expose unsolved problems of the practice. To develop new methods in computer aided geometry.