从胶原仿生到胶原杂交再到胶原杂交。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-05-25 DOI:10.1021/acs.accounts.3c00772
Pahweenvaj Ratnatilaka Na Bhuket, Yang Li and S. Michael Yu*, 
{"title":"从胶原仿生到胶原杂交再到胶原杂交。","authors":"Pahweenvaj Ratnatilaka\r\nNa Bhuket,&nbsp;Yang Li and S. Michael Yu*,&nbsp;","doi":"10.1021/acs.accounts.3c00772","DOIUrl":null,"url":null,"abstract":"<p >Facilitated by the unique triple-helical protein structure, fibrous collagens, the principal proteins in animals, demonstrate a dual function of serving as building blocks for tissue scaffolds and as a bioactive material capable of swift renewal in response to environmental changes. While studies of triple-helical collagen mimetic peptides (CMPs) have been instrumental in understanding the molecular forces responsible for the folding and assembly of triple helices, as well as identifying bioactive regions of fibrous collagen molecules, single-strand CMPs that can specifically target and hybridize to denatured collagens (i.e., collagen hybridizing peptides, CHPs) have proven useful in identifying the remodeling activity of collagen-rich tissues related to development, homeostasis, and pathology. Efforts to improve the utility of CHPs have resulted in the development of new skeletal structures, such as dimeric and cyclic CHPs, as well as the incorporation of artificial amino acids, including fluorinated proline and N-substituted glycines (peptoid residues). In particular, dimeric CHPs were used to capture collagen fragments from biological fluid for biomarker study, and the introduction of peptoid-based collagen mimetics has sparked renewed interest in peptidomimetic research because peptoids enable a stable triple-helical structure and the presentation of an extensive array of side chain structures offering a versatile platform for the development of new collagen mimetics.</p><p >This Account will cover the evolution of our research from CMPs as biomaterials to ongoing efforts in developing triple-helical peptides with practical theranostic potential in targeting denatured and damaged collagens. Our early efforts in functionalizing natural collagen scaffolds via noncovalent modifications led to the discovery of an entirely new use of CMPs. This discovery resulted in the development of CHPs that are now used by many different laboratories for the investigation of pathologies associated with changes in the structures of extracellular matrices including fibrosis, cancer, and mechanical damage to collagen-rich, load-bearing tissues. Here, we delve into the essential design features of CHPs contributing to their collagen binding properties and practical usage and explore the necessity for further mechanistic understanding of not only the binding processes (e.g., binding domain and stoichiometry of the hybridized complex) but also the biology of collagen degradation, from proteolytic digestion of fibrils to cellular processing of collagen fragments. We also discuss the strengths and weaknesses of peptoid-based triple-helical peptides as applied to collagen hybridization touching on thermodynamic and kinetic aspects of triple-helical folding. Finally, we highlight current limitations and future directions in the use of peptoid building blocks to develop bioactive collagen mimetics as new functional biomaterials.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From Collagen Mimetics to Collagen Hybridization and Back\",\"authors\":\"Pahweenvaj Ratnatilaka\\r\\nNa Bhuket,&nbsp;Yang Li and S. Michael Yu*,&nbsp;\",\"doi\":\"10.1021/acs.accounts.3c00772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Facilitated by the unique triple-helical protein structure, fibrous collagens, the principal proteins in animals, demonstrate a dual function of serving as building blocks for tissue scaffolds and as a bioactive material capable of swift renewal in response to environmental changes. While studies of triple-helical collagen mimetic peptides (CMPs) have been instrumental in understanding the molecular forces responsible for the folding and assembly of triple helices, as well as identifying bioactive regions of fibrous collagen molecules, single-strand CMPs that can specifically target and hybridize to denatured collagens (i.e., collagen hybridizing peptides, CHPs) have proven useful in identifying the remodeling activity of collagen-rich tissues related to development, homeostasis, and pathology. Efforts to improve the utility of CHPs have resulted in the development of new skeletal structures, such as dimeric and cyclic CHPs, as well as the incorporation of artificial amino acids, including fluorinated proline and N-substituted glycines (peptoid residues). In particular, dimeric CHPs were used to capture collagen fragments from biological fluid for biomarker study, and the introduction of peptoid-based collagen mimetics has sparked renewed interest in peptidomimetic research because peptoids enable a stable triple-helical structure and the presentation of an extensive array of side chain structures offering a versatile platform for the development of new collagen mimetics.</p><p >This Account will cover the evolution of our research from CMPs as biomaterials to ongoing efforts in developing triple-helical peptides with practical theranostic potential in targeting denatured and damaged collagens. Our early efforts in functionalizing natural collagen scaffolds via noncovalent modifications led to the discovery of an entirely new use of CMPs. This discovery resulted in the development of CHPs that are now used by many different laboratories for the investigation of pathologies associated with changes in the structures of extracellular matrices including fibrosis, cancer, and mechanical damage to collagen-rich, load-bearing tissues. Here, we delve into the essential design features of CHPs contributing to their collagen binding properties and practical usage and explore the necessity for further mechanistic understanding of not only the binding processes (e.g., binding domain and stoichiometry of the hybridized complex) but also the biology of collagen degradation, from proteolytic digestion of fibrils to cellular processing of collagen fragments. We also discuss the strengths and weaknesses of peptoid-based triple-helical peptides as applied to collagen hybridization touching on thermodynamic and kinetic aspects of triple-helical folding. Finally, we highlight current limitations and future directions in the use of peptoid building blocks to develop bioactive collagen mimetics as new functional biomaterials.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.accounts.3c00772\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.accounts.3c00772","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Conspectus通过独特的三重螺旋蛋白质结构,动物体内的主要蛋白质纤维胶原显示出双重功能:既是组织支架的构件,又是一种生物活性材料,能够根据环境变化迅速更新。对三螺旋胶原蛋白仿生肽(CMPs)的研究有助于了解三螺旋折叠和组装的分子作用力,以及确定纤维胶原蛋白分子的生物活性区域,而能够特异性靶向变性胶原蛋白并与之杂交的单链 CMPs(即胶原杂交肽,CHPs)已被证明有助于确定富含胶原蛋白的组织在发育、稳态和病理方面的重塑活动。为了提高胶原杂交肽的效用,人们开发了新的骨骼结构,如二聚体和环状胶原杂交肽,并加入了人工氨基酸,包括氟化脯氨酸和 N-取代甘氨酸(蛋白胨残基)。特别是,二聚 CHPs 被用于从生物液体中捕获胶原片段进行生物标记物研究,而基于蛋白胨的胶原拟态物的引入再次激发了人们对肽拟态研究的兴趣,因为蛋白胨能够形成稳定的三重螺旋结构,并呈现出多种侧链结构,为开发新的胶原拟态物提供了一个多功能平台。本报告将介绍我们的研究从作为生物材料的 CMP 到开发具有实际治疗潜力的三重螺旋肽的演变过程,这些三重螺旋肽可用于靶向变性和受损的胶原蛋白。我们早期通过非共价修饰对天然胶原支架进行功能化处理,发现了 CMP 的全新用途。这一发现促成了 CHPs 的开发,现在许多不同的实验室都在使用 CHPs 研究与细胞外基质结构变化相关的病理,包括纤维化、癌症以及对富含胶原蛋白的承重组织的机械损伤。在此,我们深入探讨了有助于胶原蛋白结合特性和实际应用的 CHPs 基本设计特征,并探讨了进一步从机理上了解结合过程(如结合域和杂交复合物的配比)以及胶原蛋白降解生物学(从纤维的蛋白酶消化到胶原蛋白片段的细胞处理)的必要性。我们还讨论了基于蛋白胨的三重螺旋肽应用于胶原杂交的优缺点,涉及三重螺旋折叠的热力学和动力学方面。最后,我们强调了使用类肽构件开发生物活性胶原蛋白仿生学作为新型功能性生物材料的当前局限性和未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
From Collagen Mimetics to Collagen Hybridization and Back

Facilitated by the unique triple-helical protein structure, fibrous collagens, the principal proteins in animals, demonstrate a dual function of serving as building blocks for tissue scaffolds and as a bioactive material capable of swift renewal in response to environmental changes. While studies of triple-helical collagen mimetic peptides (CMPs) have been instrumental in understanding the molecular forces responsible for the folding and assembly of triple helices, as well as identifying bioactive regions of fibrous collagen molecules, single-strand CMPs that can specifically target and hybridize to denatured collagens (i.e., collagen hybridizing peptides, CHPs) have proven useful in identifying the remodeling activity of collagen-rich tissues related to development, homeostasis, and pathology. Efforts to improve the utility of CHPs have resulted in the development of new skeletal structures, such as dimeric and cyclic CHPs, as well as the incorporation of artificial amino acids, including fluorinated proline and N-substituted glycines (peptoid residues). In particular, dimeric CHPs were used to capture collagen fragments from biological fluid for biomarker study, and the introduction of peptoid-based collagen mimetics has sparked renewed interest in peptidomimetic research because peptoids enable a stable triple-helical structure and the presentation of an extensive array of side chain structures offering a versatile platform for the development of new collagen mimetics.

This Account will cover the evolution of our research from CMPs as biomaterials to ongoing efforts in developing triple-helical peptides with practical theranostic potential in targeting denatured and damaged collagens. Our early efforts in functionalizing natural collagen scaffolds via noncovalent modifications led to the discovery of an entirely new use of CMPs. This discovery resulted in the development of CHPs that are now used by many different laboratories for the investigation of pathologies associated with changes in the structures of extracellular matrices including fibrosis, cancer, and mechanical damage to collagen-rich, load-bearing tissues. Here, we delve into the essential design features of CHPs contributing to their collagen binding properties and practical usage and explore the necessity for further mechanistic understanding of not only the binding processes (e.g., binding domain and stoichiometry of the hybridized complex) but also the biology of collagen degradation, from proteolytic digestion of fibrils to cellular processing of collagen fragments. We also discuss the strengths and weaknesses of peptoid-based triple-helical peptides as applied to collagen hybridization touching on thermodynamic and kinetic aspects of triple-helical folding. Finally, we highlight current limitations and future directions in the use of peptoid building blocks to develop bioactive collagen mimetics as new functional biomaterials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
How Droplets Can Accelerate Reactions─Coacervate Protocells as Catalytic Microcompartments. Rational Construction of Two-Dimensional Conjugated Metal-Organic Frameworks (2D c-MOFs) for Electronics and Beyond. Overcoming Challenges of Lignin Nanoparticles: Expanding Opportunities for Scalable and Multifunctional Nanomaterials. Dual Nickel- and Photoredox-Catalyzed Asymmetric Reductive Cross-Couplings: Just a Change of the Reduction System? Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1