Amberlyst-15 在循环固定床反应器中催化丙酮酸三丁酯的热力学和动力学研究

IF 1.6 4区 工程技术 Q3 Chemical Engineering International Journal of Chemical Reactor Engineering Pub Date : 2024-05-27 DOI:10.1515/ijcre-2023-0222
Ailin Deng, Qiqi Ma, Yunxiang Hu, Xin Zhang, S. Yang, Nianhua Song, Wuji Sun, Xuejun Liu, Jianbing Ji
{"title":"Amberlyst-15 在循环固定床反应器中催化丙酮酸三丁酯的热力学和动力学研究","authors":"Ailin Deng, Qiqi Ma, Yunxiang Hu, Xin Zhang, S. Yang, Nianhua Song, Wuji Sun, Xuejun Liu, Jianbing Ji","doi":"10.1515/ijcre-2023-0222","DOIUrl":null,"url":null,"abstract":"\n Tributyl aconitate is a new type of alternative plasticizer to phthalates. Amberlyst-15 was used to catalyze the esterification of aconitic acid and n-butanol for the preparation of tributyl aconitate in a cyclic fixed-bed reactor. The influence of the reaction conditions on the conversion was investigated. The results showed that the conversion of aconitic acid increased significantly with the rise of temperature and catalyst loading. The reaction conditions were optimized as: temperature: 115 °C; initial mass ratio of AA and n-butanol: 1:4; catalyst loading: 25 %; reaction absolute pressure: 85 kPa; volume flow rate: 30 mL min−1. Thermodynamics and kinetics of the reaction was studied. The non-ideality of the reaction system was rectified using the UNIFAC group contribution method. The kinetic process was simulated using the pseudo-homogeneous (PH) model, Eley-Rideal (E-R) model, and Langmuir-Hinshelwood-Hougen-Watson (LHHW) model. The results revealed that the E-R model exhibited superior suitability in simulating the kinetic process.","PeriodicalId":51069,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic and kinetic study on the catalysis of tributyl aconitate by Amberlyst-15 in a cyclic fixed-bed reactor\",\"authors\":\"Ailin Deng, Qiqi Ma, Yunxiang Hu, Xin Zhang, S. Yang, Nianhua Song, Wuji Sun, Xuejun Liu, Jianbing Ji\",\"doi\":\"10.1515/ijcre-2023-0222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Tributyl aconitate is a new type of alternative plasticizer to phthalates. Amberlyst-15 was used to catalyze the esterification of aconitic acid and n-butanol for the preparation of tributyl aconitate in a cyclic fixed-bed reactor. The influence of the reaction conditions on the conversion was investigated. The results showed that the conversion of aconitic acid increased significantly with the rise of temperature and catalyst loading. The reaction conditions were optimized as: temperature: 115 °C; initial mass ratio of AA and n-butanol: 1:4; catalyst loading: 25 %; reaction absolute pressure: 85 kPa; volume flow rate: 30 mL min−1. Thermodynamics and kinetics of the reaction was studied. The non-ideality of the reaction system was rectified using the UNIFAC group contribution method. The kinetic process was simulated using the pseudo-homogeneous (PH) model, Eley-Rideal (E-R) model, and Langmuir-Hinshelwood-Hougen-Watson (LHHW) model. The results revealed that the E-R model exhibited superior suitability in simulating the kinetic process.\",\"PeriodicalId\":51069,\"journal\":{\"name\":\"International Journal of Chemical Reactor Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Reactor Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijcre-2023-0222\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Reactor Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijcre-2023-0222","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

丙酮酸三丁酯是邻苯二甲酸酯的一种新型替代增塑剂。在循环固定床反应器中,使用 Amberlyst-15 催化了乌头酸和正丁醇的酯化反应,以制备丙酸三丁酯。研究了反应条件对转化率的影响。结果表明,随着温度和催化剂装填量的增加,乌头酸的转化率显著提高。反应条件优化为:温度温度:115 °C;AA 和正丁醇的初始质量比:1:4;催化剂装填量:25 %;反应绝对压力:85 °C:25 %;反应绝对压力:85 kPa;体积流量:30 mL min-1:30 mL min-1。对反应的热力学和动力学进行了研究。使用 UNIFAC 组贡献法纠正了反应体系的非理想性。使用伪均质(PH)模型、Eley-Rideal(E-R)模型和 Langmuir-Hinshelwood-Hougen-Watson (LHHW)模型模拟了动力学过程。结果表明,E-R 模型在模拟动力学过程中表现出更优越的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermodynamic and kinetic study on the catalysis of tributyl aconitate by Amberlyst-15 in a cyclic fixed-bed reactor
Tributyl aconitate is a new type of alternative plasticizer to phthalates. Amberlyst-15 was used to catalyze the esterification of aconitic acid and n-butanol for the preparation of tributyl aconitate in a cyclic fixed-bed reactor. The influence of the reaction conditions on the conversion was investigated. The results showed that the conversion of aconitic acid increased significantly with the rise of temperature and catalyst loading. The reaction conditions were optimized as: temperature: 115 °C; initial mass ratio of AA and n-butanol: 1:4; catalyst loading: 25 %; reaction absolute pressure: 85 kPa; volume flow rate: 30 mL min−1. Thermodynamics and kinetics of the reaction was studied. The non-ideality of the reaction system was rectified using the UNIFAC group contribution method. The kinetic process was simulated using the pseudo-homogeneous (PH) model, Eley-Rideal (E-R) model, and Langmuir-Hinshelwood-Hougen-Watson (LHHW) model. The results revealed that the E-R model exhibited superior suitability in simulating the kinetic process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
12.50%
发文量
107
审稿时长
3 months
期刊介绍: The International Journal of Chemical Reactor Engineering covers the broad fields of theoretical and applied reactor engineering. The IJCRE covers topics drawn from the substantial areas of overlap between catalysis, reaction and reactor engineering. The journal is presently edited by Hugo de Lasa and Charles Xu, counting with an impressive list of Editorial Board leading specialists in chemical reactor engineering. Authors include notable international professors and R&D industry leaders.
期刊最新文献
VOCs (toluene) removal from iron ore sintering flue gas via LaBO3 (B = Cu, Fe, Cr, Mn, Co) perovskite catalysts: experiment and mechanism Ethyl acetate production by Fischer esterification: use of excess of acetic acid and complete separation sequence Thermodynamic and kinetic study on the catalysis of tributyl aconitate by Amberlyst-15 in a cyclic fixed-bed reactor R dot approach for kinetic modelling of WGS over noble metals Retraction of: Computational fluid dynamic simulations to improve heat transfer in shell tube heat exchangers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1