喜马偕尔邦 Chhota Shigri 冰川 2017 年至 2022 年冰量动态的集合建模

IF 2.7 4区 环境科学与生态学 Q2 WATER RESOURCES Journal of Water and Climate Change Pub Date : 2024-05-24 DOI:10.2166/wcc.2024.074
Diksha Sinha, Hemant Singh, D. Varade
{"title":"喜马偕尔邦 Chhota Shigri 冰川 2017 年至 2022 年冰量动态的集合建模","authors":"Diksha Sinha, Hemant Singh, D. Varade","doi":"10.2166/wcc.2024.074","DOIUrl":null,"url":null,"abstract":"\n Glaciers are the source of freshwater for many perennial rivers around the world. Out of 215,000 glaciers apart from the polar ice sheets, the Himalayas constitute about 54,000 glaciers and are often referred to as the third pole on the Earth. In recent decades, the Himalayan glaciers have been experiencing increased recession as a consequence of climate change. Subsequently, understanding the dynamics of glacier ice parameters and volume becomes significant. In this study, an ensemble model of laminar-flow-based and basal-shear-stress-based models on the Chhota Shigri Glacier was investigated to understand the dynamics of glacier ice thickness over 6 years, from 2017 to 2022. The glacier volume was determined from the ensembled ice thickness. Our results indicate that the ensemble model yields the minimum ice thickness measurement of 102 ± 17.38 m and the maximum of 112 ± 19.04 m for the years 2017 and 2019, respectively. The estimated results show a correlation of 81% with a global ice thickness dataset. The ensemble approach provides better estimates for ice thickness accounting for more parameters affecting the glacier dynamics. From 2017 to 2022, the Chhota Shigri Glacier volume has been observed to show a slightly negative trend.","PeriodicalId":49150,"journal":{"name":"Journal of Water and Climate Change","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ensemble modelling of ice volume dynamics of Chhota Shigri Glacier in Himachal Pradesh from 2017 to 2022\",\"authors\":\"Diksha Sinha, Hemant Singh, D. Varade\",\"doi\":\"10.2166/wcc.2024.074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Glaciers are the source of freshwater for many perennial rivers around the world. Out of 215,000 glaciers apart from the polar ice sheets, the Himalayas constitute about 54,000 glaciers and are often referred to as the third pole on the Earth. In recent decades, the Himalayan glaciers have been experiencing increased recession as a consequence of climate change. Subsequently, understanding the dynamics of glacier ice parameters and volume becomes significant. In this study, an ensemble model of laminar-flow-based and basal-shear-stress-based models on the Chhota Shigri Glacier was investigated to understand the dynamics of glacier ice thickness over 6 years, from 2017 to 2022. The glacier volume was determined from the ensembled ice thickness. Our results indicate that the ensemble model yields the minimum ice thickness measurement of 102 ± 17.38 m and the maximum of 112 ± 19.04 m for the years 2017 and 2019, respectively. The estimated results show a correlation of 81% with a global ice thickness dataset. The ensemble approach provides better estimates for ice thickness accounting for more parameters affecting the glacier dynamics. From 2017 to 2022, the Chhota Shigri Glacier volume has been observed to show a slightly negative trend.\",\"PeriodicalId\":49150,\"journal\":{\"name\":\"Journal of Water and Climate Change\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water and Climate Change\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/wcc.2024.074\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Climate Change","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wcc.2024.074","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

冰川是世界各地许多常年河流的淡水来源。除极地冰原外,喜马拉雅山脉有 21.5 万个冰川,其中约有 5.4 万个冰川,常被称为地球上的第三极。近几十年来,由于气候变化,喜马拉雅山冰川的衰退加剧。因此,了解冰川冰层参数和体积的动态变化变得非常重要。在这项研究中,对乔塔-希格利冰川上基于层流模型和基于基底剪切应力模型的集合模型进行了研究,以了解从 2017 年到 2022 年 6 年间冰川冰层厚度的动态变化。冰川体积是根据集合冰层厚度确定的。结果表明,集合模型得出的 2017 年和 2019 年冰层厚度最小测量值分别为 102 ± 17.38 米和 112 ± 19.04 米。估计结果与全球冰层厚度数据集的相关度为 81%。考虑到更多影响冰川动力学的参数,集合方法提供了更好的冰厚度估计值。据观测,从 2017 年到 2022 年,乔塔希格里冰川的体积呈现出轻微的负增长趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ensemble modelling of ice volume dynamics of Chhota Shigri Glacier in Himachal Pradesh from 2017 to 2022
Glaciers are the source of freshwater for many perennial rivers around the world. Out of 215,000 glaciers apart from the polar ice sheets, the Himalayas constitute about 54,000 glaciers and are often referred to as the third pole on the Earth. In recent decades, the Himalayan glaciers have been experiencing increased recession as a consequence of climate change. Subsequently, understanding the dynamics of glacier ice parameters and volume becomes significant. In this study, an ensemble model of laminar-flow-based and basal-shear-stress-based models on the Chhota Shigri Glacier was investigated to understand the dynamics of glacier ice thickness over 6 years, from 2017 to 2022. The glacier volume was determined from the ensembled ice thickness. Our results indicate that the ensemble model yields the minimum ice thickness measurement of 102 ± 17.38 m and the maximum of 112 ± 19.04 m for the years 2017 and 2019, respectively. The estimated results show a correlation of 81% with a global ice thickness dataset. The ensemble approach provides better estimates for ice thickness accounting for more parameters affecting the glacier dynamics. From 2017 to 2022, the Chhota Shigri Glacier volume has been observed to show a slightly negative trend.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
10.70%
发文量
168
审稿时长
>12 weeks
期刊介绍: Journal of Water and Climate Change publishes refereed research and practitioner papers on all aspects of water science, technology, management and innovation in response to climate change, with emphasis on reduction of energy usage.
期刊最新文献
Morpho-hydrodynamic processes impacted by the 2022 extreme La Niña event and high river discharge conditions in the southern coast of West Java, Indonesia Impacts of climate change and variability on drought characteristics and challenges on sorghum productivity in Babile District, Eastern Ethiopia Monitoring the effects of climate change and topography on vegetation health in Tharparkar, Pakistan Elevation-dependent effects of snowfall and snow cover changes on runoff variations at the source regions of the Yellow River basin Meta-learning applied to a multivariate single-step fusion model for greenhouse gas emission forecasting in Brazil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1