{"title":"离散潜隐嵌入揭示单细胞表观组学中的细胞多样性","authors":"Zhi Wei","doi":"10.1038/s43588-024-00634-3","DOIUrl":null,"url":null,"abstract":"CASTLE, a deep learning approach, extracts interpretable discrete representations from single-cell chromatin accessibility data, enabling accurate cell type identification, effective data integration, and quantitative insights into gene regulatory mechanisms.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 5","pages":"316-317"},"PeriodicalIF":12.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete latent embeddings illuminate cellular diversity in single-cell epigenomics\",\"authors\":\"Zhi Wei\",\"doi\":\"10.1038/s43588-024-00634-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CASTLE, a deep learning approach, extracts interpretable discrete representations from single-cell chromatin accessibility data, enabling accurate cell type identification, effective data integration, and quantitative insights into gene regulatory mechanisms.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\"4 5\",\"pages\":\"316-317\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-024-00634-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00634-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Discrete latent embeddings illuminate cellular diversity in single-cell epigenomics
CASTLE, a deep learning approach, extracts interpretable discrete representations from single-cell chromatin accessibility data, enabling accurate cell type identification, effective data integration, and quantitative insights into gene regulatory mechanisms.