利用机器学习和物联网实现智能交通信号

Sandeep B
{"title":"利用机器学习和物联网实现智能交通信号","authors":"Sandeep B","doi":"10.55041/ijsrem34607","DOIUrl":null,"url":null,"abstract":"The project, titled “Smart Traffic Signaling using Machine Learning and IoT,\" introduces an innovative solution for optimizing traffic signal control. By harnessing the power of image processing, IoT, and machine learning, this project will be a real-time system that accurately assesses vehicle density at intersections. The project focuses on training a machine learning model to recognize various vehicle types, including bikes, cars, trucks, and heavy vehicles. This adaptive control mechanism aims to enhance traffic flow efficiency, reduce congestion, and contribute to the advancement of intelligent transportation systems. systems. Key Words: Machine learning, IoT, Image processing, Smart Traffic.","PeriodicalId":13661,"journal":{"name":"INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT","volume":"13 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart Traffic Signaling Using Machine Learning and IoT\",\"authors\":\"Sandeep B\",\"doi\":\"10.55041/ijsrem34607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The project, titled “Smart Traffic Signaling using Machine Learning and IoT,\\\" introduces an innovative solution for optimizing traffic signal control. By harnessing the power of image processing, IoT, and machine learning, this project will be a real-time system that accurately assesses vehicle density at intersections. The project focuses on training a machine learning model to recognize various vehicle types, including bikes, cars, trucks, and heavy vehicles. This adaptive control mechanism aims to enhance traffic flow efficiency, reduce congestion, and contribute to the advancement of intelligent transportation systems. systems. Key Words: Machine learning, IoT, Image processing, Smart Traffic.\",\"PeriodicalId\":13661,\"journal\":{\"name\":\"INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT\",\"volume\":\"13 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55041/ijsrem34607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55041/ijsrem34607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

该项目名为 "使用机器学习和物联网的智能交通信号",介绍了一种优化交通信号控制的创新解决方案。通过利用图像处理、物联网和机器学习的力量,该项目将成为一个能准确评估十字路口车辆密度的实时系统。该项目的重点是训练一个机器学习模型来识别各种车辆类型,包括自行车、汽车、卡车和重型车辆。这种自适应控制机制旨在提高交通流效率,减少拥堵,并促进智能交通系统的发展。关键字机器学习 物联网 图像处理 智能交通
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Smart Traffic Signaling Using Machine Learning and IoT
The project, titled “Smart Traffic Signaling using Machine Learning and IoT," introduces an innovative solution for optimizing traffic signal control. By harnessing the power of image processing, IoT, and machine learning, this project will be a real-time system that accurately assesses vehicle density at intersections. The project focuses on training a machine learning model to recognize various vehicle types, including bikes, cars, trucks, and heavy vehicles. This adaptive control mechanism aims to enhance traffic flow efficiency, reduce congestion, and contribute to the advancement of intelligent transportation systems. systems. Key Words: Machine learning, IoT, Image processing, Smart Traffic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring Vulnerabilities and Threats in Large Language Models: Safeguarding Against Exploitation and Misuse Experimental Investigation of Leachate Treatment Using Low-Cost Adsorbents Exploring Vulnerabilities and Threats in Large Language Models: Safeguarding Against Exploitation and Misuse BANK TRANSACTION USING IRIS AND BIOMETRIC Experimental Investigation of Leachate Treatment Using Low-Cost Adsorbents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1