将黑夜变为白昼:利用可见红外成像辐射计套件(VIIRS)昼夜波段(DNB)和机器学习创建和验证合成夜间可见光图像

Chandra M. Pasillas, Christian Kummerow, Michael Bell, Steven D. Miller
{"title":"将黑夜变为白昼:利用可见红外成像辐射计套件(VIIRS)昼夜波段(DNB)和机器学习创建和验证合成夜间可见光图像","authors":"Chandra M. Pasillas, Christian Kummerow, Michael Bell, Steven D. Miller","doi":"10.1175/aies-d-23-0002.1","DOIUrl":null,"url":null,"abstract":"\nMeteorological satellite imagery is a critical asset for observing and forecasting weather phenomena. The Joint Polar Satellite System (JPSS) Visible Infrared Imaging Radiometer Suite (VIIRS) Day-Night Band (DNB) sensor collects measurements from moonlight, airglow, and artificial lights. DNB radiances are then manipulated and scaled with a focus on digital display. DNB imagery performance is tied to the lunar cycle, with best performance during the full moon and worst with the new moon. We propose using feed-forward neural networks models to transform brightness temperatures and wavelength differences in the infrared spectrum to a pseudo lunar reflectance value based on lunar reflectance values derived from observed DNB radiances. JPSS NOAA-20 and Suomi National Polar-orbiting Partnership (SNPP) satellite data over the North Pacific Ocean at night for full moon periods from December 2018 - November 2020 were used to design the models. The pseudo lunar reflectance values are quantitatively compared to DNB lunar reflectance, providing the first-ever lunar reflectance baseline metrics. The resulting imagery product, Machine Learning Night-time Visible Imagery (ML-NVI), is qualitatively compared to DNB lunar reflectance and infrared imagery across the lunar cycle. The imagery goal is not only to improve upon the consistency performance of DNB imagery products across the lunar cycle, but ultimately lay the foundation for transitioning the algorithm to geostationary sensors, making global continuous nighttime imagery possible. ML-NVI demonstrates its ability to provide DNB derived imagery with consistent contrast and representation of clouds across the full lunar cycle for night-time cloud detection.","PeriodicalId":94369,"journal":{"name":"Artificial intelligence for the earth systems","volume":"6 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turning Night Into Day: The Creation and Validation of Synthetic Night-time Visible Imagery Using the Visible Infrared Imaging Radiometer Suite (VIIRS) Day-Night Band (DNB) and Machine Learning\",\"authors\":\"Chandra M. Pasillas, Christian Kummerow, Michael Bell, Steven D. Miller\",\"doi\":\"10.1175/aies-d-23-0002.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nMeteorological satellite imagery is a critical asset for observing and forecasting weather phenomena. The Joint Polar Satellite System (JPSS) Visible Infrared Imaging Radiometer Suite (VIIRS) Day-Night Band (DNB) sensor collects measurements from moonlight, airglow, and artificial lights. DNB radiances are then manipulated and scaled with a focus on digital display. DNB imagery performance is tied to the lunar cycle, with best performance during the full moon and worst with the new moon. We propose using feed-forward neural networks models to transform brightness temperatures and wavelength differences in the infrared spectrum to a pseudo lunar reflectance value based on lunar reflectance values derived from observed DNB radiances. JPSS NOAA-20 and Suomi National Polar-orbiting Partnership (SNPP) satellite data over the North Pacific Ocean at night for full moon periods from December 2018 - November 2020 were used to design the models. The pseudo lunar reflectance values are quantitatively compared to DNB lunar reflectance, providing the first-ever lunar reflectance baseline metrics. The resulting imagery product, Machine Learning Night-time Visible Imagery (ML-NVI), is qualitatively compared to DNB lunar reflectance and infrared imagery across the lunar cycle. The imagery goal is not only to improve upon the consistency performance of DNB imagery products across the lunar cycle, but ultimately lay the foundation for transitioning the algorithm to geostationary sensors, making global continuous nighttime imagery possible. ML-NVI demonstrates its ability to provide DNB derived imagery with consistent contrast and representation of clouds across the full lunar cycle for night-time cloud detection.\",\"PeriodicalId\":94369,\"journal\":{\"name\":\"Artificial intelligence for the earth systems\",\"volume\":\"6 18\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence for the earth systems\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.1175/aies-d-23-0002.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence for the earth systems","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1175/aies-d-23-0002.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

气象卫星图像是观测和预报天气现象的重要资产。联合极地卫星系统(JPSS)可见红外成像辐射计套件(VIIRS)昼夜波段(DNB)传感器收集月光、气辉和人造光的测量数据。然后对 DNB 辐射值进行处理和缩放,重点是数字显示。DNB 图像的性能与月相周期有关,满月时性能最佳,新月时最差。我们建议使用前馈神经网络模型,根据观测到的 DNB 辐射值得出的月球反射率值,将红外光谱中的亮度温度和波长差异转换为伪月球反射率值。设计模型时使用了 JPSS NOAA-20 和 Suomi 国家极轨伙伴关系(SNPP)卫星 2018 年 12 月至 2020 年 11 月满月期间北太平洋夜间上空的数据。伪月球反射率值与 DNB 月球反射率进行了定量比较,首次提供了月球反射率基线指标。由此产生的图像产品 "机器学习夜间可见光图像(ML-NVI)"与 DNB 月球反射率和整个月球周期的红外图像进行了定性比较。该图像的目标不仅是提高 DNB 图像产品在整个月球周期的一致性能,而且最终为将该算法过渡到地球静止传感器奠定基础,使全球连续夜间图像成为可能。ML-NVI 展示了其提供 DNB 衍生图像的能力,该图像在整个月球周期内具有一致的对比度和云层表现,可用于夜间云层探测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Turning Night Into Day: The Creation and Validation of Synthetic Night-time Visible Imagery Using the Visible Infrared Imaging Radiometer Suite (VIIRS) Day-Night Band (DNB) and Machine Learning
Meteorological satellite imagery is a critical asset for observing and forecasting weather phenomena. The Joint Polar Satellite System (JPSS) Visible Infrared Imaging Radiometer Suite (VIIRS) Day-Night Band (DNB) sensor collects measurements from moonlight, airglow, and artificial lights. DNB radiances are then manipulated and scaled with a focus on digital display. DNB imagery performance is tied to the lunar cycle, with best performance during the full moon and worst with the new moon. We propose using feed-forward neural networks models to transform brightness temperatures and wavelength differences in the infrared spectrum to a pseudo lunar reflectance value based on lunar reflectance values derived from observed DNB radiances. JPSS NOAA-20 and Suomi National Polar-orbiting Partnership (SNPP) satellite data over the North Pacific Ocean at night for full moon periods from December 2018 - November 2020 were used to design the models. The pseudo lunar reflectance values are quantitatively compared to DNB lunar reflectance, providing the first-ever lunar reflectance baseline metrics. The resulting imagery product, Machine Learning Night-time Visible Imagery (ML-NVI), is qualitatively compared to DNB lunar reflectance and infrared imagery across the lunar cycle. The imagery goal is not only to improve upon the consistency performance of DNB imagery products across the lunar cycle, but ultimately lay the foundation for transitioning the algorithm to geostationary sensors, making global continuous nighttime imagery possible. ML-NVI demonstrates its ability to provide DNB derived imagery with consistent contrast and representation of clouds across the full lunar cycle for night-time cloud detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transferability and explainability of deep learning emulators for regional climate model projections: Perspectives for future applications Classification of ice particle shapes using machine learning on forward light scattering images Convolutional encoding and normalizing flows: a deep learning approach for offshore wind speed probabilistic forecasting in the Mediterranean Sea Neural networks to find the optimal forcing for offsetting the anthropogenic climate change effects Machine Learning Approach for Spatiotemporal Multivariate Optimization of Environmental Monitoring Sensor Locations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1