{"title":"杂环多胺和 5-磺基水杨酸的新型盐:合成、晶体结构和分层超分子相互作用","authors":"J. Bojarska, Krzysztof Łyczko, Adam Mieczkowski","doi":"10.3390/cryst14060497","DOIUrl":null,"url":null,"abstract":"A series of novel salts of heterocyclic polyamines with 5-sulfosalicylic acid (C4H7N4+)(C7H5O6S−)∙2(H2O) (1), (C4H6ClN4+)(C7H5O6S−)∙H2O (2), (C5H8N3+)(C7H5O6S−)∙H2O (3), (C5H7N6+)(C7H5O6S−)∙H2O (4), (C6H14N22+)(C7H4O6S2−)∙H2O (5), and (C14H19N2+)(C7H5O6S−) (6) have been successfully synthesized. Their crystal structures have been determined by single-crystal X-ray diffraction. Overall, compounds adopt a layered structure with aminium cations and 5-sulfosalicylic anions linked via water molecules. The solid-state architectures of these compounds are dominated by O(N,H)-H⋯O and N-H⋯N hydrogen bonds and stabilized by weak interconnects. C-Cl⋯π and S-O⋯π interactions, apart from π⋯π and C-H(O)⋯π, were reported. Diverse approaches were used to study the effect of substituents in the polyamines in solid-state arrangement. A Hirshfeld surface analysis, with associated 3D Hirshfeld surface maps and 2D fingerprint plots, molecular electrostatic potential, and energy frameworks were used to comprehensively investigate the nature and hierarchy of non-covalent interactions and inspect supramolecular differences. The contact enrichment ratio calculations provided deeper insight into the propensity of interconnects to influence crystal packing. The evaluation of the effects of H-bonding synthons resulting from different substituents in the polyamines on self-assemblies is also presented. In the context of crystal engineering, a specific intramolecular synthon via O-H⋯O observed in nearly all crystals can be employed in the pseudo-cyclic replacement strategy in the design of new molecules.","PeriodicalId":505131,"journal":{"name":"Crystals","volume":"67 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Salts of Heterocyclic Polyamines and 5-Sulfosalicylic Acid: Synthesis, Crystal Structure, and Hierarchical Supramolecular Interactions\",\"authors\":\"J. Bojarska, Krzysztof Łyczko, Adam Mieczkowski\",\"doi\":\"10.3390/cryst14060497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A series of novel salts of heterocyclic polyamines with 5-sulfosalicylic acid (C4H7N4+)(C7H5O6S−)∙2(H2O) (1), (C4H6ClN4+)(C7H5O6S−)∙H2O (2), (C5H8N3+)(C7H5O6S−)∙H2O (3), (C5H7N6+)(C7H5O6S−)∙H2O (4), (C6H14N22+)(C7H4O6S2−)∙H2O (5), and (C14H19N2+)(C7H5O6S−) (6) have been successfully synthesized. Their crystal structures have been determined by single-crystal X-ray diffraction. Overall, compounds adopt a layered structure with aminium cations and 5-sulfosalicylic anions linked via water molecules. The solid-state architectures of these compounds are dominated by O(N,H)-H⋯O and N-H⋯N hydrogen bonds and stabilized by weak interconnects. C-Cl⋯π and S-O⋯π interactions, apart from π⋯π and C-H(O)⋯π, were reported. Diverse approaches were used to study the effect of substituents in the polyamines in solid-state arrangement. A Hirshfeld surface analysis, with associated 3D Hirshfeld surface maps and 2D fingerprint plots, molecular electrostatic potential, and energy frameworks were used to comprehensively investigate the nature and hierarchy of non-covalent interactions and inspect supramolecular differences. The contact enrichment ratio calculations provided deeper insight into the propensity of interconnects to influence crystal packing. The evaluation of the effects of H-bonding synthons resulting from different substituents in the polyamines on self-assemblies is also presented. In the context of crystal engineering, a specific intramolecular synthon via O-H⋯O observed in nearly all crystals can be employed in the pseudo-cyclic replacement strategy in the design of new molecules.\",\"PeriodicalId\":505131,\"journal\":{\"name\":\"Crystals\",\"volume\":\"67 16\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/cryst14060497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cryst14060497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Novel Salts of Heterocyclic Polyamines and 5-Sulfosalicylic Acid: Synthesis, Crystal Structure, and Hierarchical Supramolecular Interactions
A series of novel salts of heterocyclic polyamines with 5-sulfosalicylic acid (C4H7N4+)(C7H5O6S−)∙2(H2O) (1), (C4H6ClN4+)(C7H5O6S−)∙H2O (2), (C5H8N3+)(C7H5O6S−)∙H2O (3), (C5H7N6+)(C7H5O6S−)∙H2O (4), (C6H14N22+)(C7H4O6S2−)∙H2O (5), and (C14H19N2+)(C7H5O6S−) (6) have been successfully synthesized. Their crystal structures have been determined by single-crystal X-ray diffraction. Overall, compounds adopt a layered structure with aminium cations and 5-sulfosalicylic anions linked via water molecules. The solid-state architectures of these compounds are dominated by O(N,H)-H⋯O and N-H⋯N hydrogen bonds and stabilized by weak interconnects. C-Cl⋯π and S-O⋯π interactions, apart from π⋯π and C-H(O)⋯π, were reported. Diverse approaches were used to study the effect of substituents in the polyamines in solid-state arrangement. A Hirshfeld surface analysis, with associated 3D Hirshfeld surface maps and 2D fingerprint plots, molecular electrostatic potential, and energy frameworks were used to comprehensively investigate the nature and hierarchy of non-covalent interactions and inspect supramolecular differences. The contact enrichment ratio calculations provided deeper insight into the propensity of interconnects to influence crystal packing. The evaluation of the effects of H-bonding synthons resulting from different substituents in the polyamines on self-assemblies is also presented. In the context of crystal engineering, a specific intramolecular synthon via O-H⋯O observed in nearly all crystals can be employed in the pseudo-cyclic replacement strategy in the design of new molecules.