扭矩-速度参数空间中具有多种润滑状态的齿轮系统的动态分析

IF 1.9 3区 工程技术 Q3 MECHANICS Meccanica Pub Date : 2024-05-24 DOI:10.1007/s11012-024-01825-y
Shuai Mo, Yingxin Zhang, Keren Chen, Yanxiao Zheng, Wei Zhang
{"title":"扭矩-速度参数空间中具有多种润滑状态的齿轮系统的动态分析","authors":"Shuai Mo,&nbsp;Yingxin Zhang,&nbsp;Keren Chen,&nbsp;Yanxiao Zheng,&nbsp;Wei Zhang","doi":"10.1007/s11012-024-01825-y","DOIUrl":null,"url":null,"abstract":"<div><p>The existence of backlash causes de-meshing and reverse impact in the gear system, and the influence of the working lubrication conditions of the gear on the dynamics is ignored. This study focused on the impact of the coupling characteristics of gear system based on the multi-meshing state model and the gear lubrication model on the evolution of nonlinear dynamic behavior. Firstly, the transition of the meshing state was considered, and the time-varying parameters such as contact radius, load distribution ratio, meshing stiffness, entrainment speed, and slip-to-roll ratio were analyzed under meshing and reverse impact conditions. Then, the elastohydrodynamic lubrication model of the gear was analyzed, the coupling effect between the lubrication model and the gear system was reflected by two factors. One was the comprehensive meshing stiffness obtained by coupling the gear meshing stiffness and the lubricating oil film stiffness, and the other was the lubrication state transition of the system determined by the oil film thickness. Further, the gear dynamics model considering the above factors was established, and the influence of the coupling characteristics of lubrication and gear systems on the dynamic behavior was analyzed on the torque–speed parameter plane. The research results have theoretical guiding significance for the parameter selection, optimization design of gear system and the optimization of meshing characteristics.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"59 6","pages":"961 - 986"},"PeriodicalIF":1.9000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic analysis of gear system with multiple lubrication states in torque–speed parameter space\",\"authors\":\"Shuai Mo,&nbsp;Yingxin Zhang,&nbsp;Keren Chen,&nbsp;Yanxiao Zheng,&nbsp;Wei Zhang\",\"doi\":\"10.1007/s11012-024-01825-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The existence of backlash causes de-meshing and reverse impact in the gear system, and the influence of the working lubrication conditions of the gear on the dynamics is ignored. This study focused on the impact of the coupling characteristics of gear system based on the multi-meshing state model and the gear lubrication model on the evolution of nonlinear dynamic behavior. Firstly, the transition of the meshing state was considered, and the time-varying parameters such as contact radius, load distribution ratio, meshing stiffness, entrainment speed, and slip-to-roll ratio were analyzed under meshing and reverse impact conditions. Then, the elastohydrodynamic lubrication model of the gear was analyzed, the coupling effect between the lubrication model and the gear system was reflected by two factors. One was the comprehensive meshing stiffness obtained by coupling the gear meshing stiffness and the lubricating oil film stiffness, and the other was the lubrication state transition of the system determined by the oil film thickness. Further, the gear dynamics model considering the above factors was established, and the influence of the coupling characteristics of lubrication and gear systems on the dynamic behavior was analyzed on the torque–speed parameter plane. The research results have theoretical guiding significance for the parameter selection, optimization design of gear system and the optimization of meshing characteristics.</p></div>\",\"PeriodicalId\":695,\"journal\":{\"name\":\"Meccanica\",\"volume\":\"59 6\",\"pages\":\"961 - 986\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meccanica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11012-024-01825-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11012-024-01825-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

反向间隙的存在会造成齿轮系统的脱啮和反向冲击,而齿轮的工作润滑条件对动力学的影响却被忽略了。本研究基于多啮合状态模型和齿轮润滑模型,重点研究齿轮系统的耦合特性对非线性动力学行为演化的影响。首先,考虑了啮合状态的转变,分析了啮合和反向冲击条件下的接触半径、载荷分布比、啮合刚度、夹带速度和滑辊比等时变参数。然后,分析了齿轮的弹性流体动力润滑模型,润滑模型与齿轮系统之间的耦合效应体现在两个因素上。一个是通过耦合齿轮啮合刚度和润滑油膜刚度得到的综合啮合刚度,另一个是由油膜厚度决定的系统润滑状态转换。此外,还建立了考虑上述因素的齿轮动力学模型,并在扭矩-速度参数平面上分析了润滑系统和齿轮系统的耦合特性对动力学行为的影响。研究成果对齿轮系统的参数选择、优化设计和啮合特性优化具有理论指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic analysis of gear system with multiple lubrication states in torque–speed parameter space

The existence of backlash causes de-meshing and reverse impact in the gear system, and the influence of the working lubrication conditions of the gear on the dynamics is ignored. This study focused on the impact of the coupling characteristics of gear system based on the multi-meshing state model and the gear lubrication model on the evolution of nonlinear dynamic behavior. Firstly, the transition of the meshing state was considered, and the time-varying parameters such as contact radius, load distribution ratio, meshing stiffness, entrainment speed, and slip-to-roll ratio were analyzed under meshing and reverse impact conditions. Then, the elastohydrodynamic lubrication model of the gear was analyzed, the coupling effect between the lubrication model and the gear system was reflected by two factors. One was the comprehensive meshing stiffness obtained by coupling the gear meshing stiffness and the lubricating oil film stiffness, and the other was the lubrication state transition of the system determined by the oil film thickness. Further, the gear dynamics model considering the above factors was established, and the influence of the coupling characteristics of lubrication and gear systems on the dynamic behavior was analyzed on the torque–speed parameter plane. The research results have theoretical guiding significance for the parameter selection, optimization design of gear system and the optimization of meshing characteristics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Meccanica
Meccanica 物理-力学
CiteScore
4.70
自引率
3.70%
发文量
151
审稿时长
7 months
期刊介绍: Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics. Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences. Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.
期刊最新文献
Investigation of droplet collision characteristics with moving film and its comparison with stationary film: unsteady and 3D CLSVOF method Compound control method for reliability of the robotic arms with clearance joint Multiscale topology optimization of anisotropic multilayer periodic structures based on the isogeometric analysis method CFD and ray tracing analysis of a discrete nozzle for laser metal deposition Design and performance investigation of a sliding-mode adaptive proportional–integral–derivative control for cable-breakage scenario
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1