应用于质子交换膜燃料电池双极板的 CrN、CrAlN 和 CrTiN 涂层的耐腐蚀性和导电性

Qiang Chen, Mingxu Su, Dan Liang, Qiong Zhou, Biao Huang, E. Zhang
{"title":"应用于质子交换膜燃料电池双极板的 CrN、CrAlN 和 CrTiN 涂层的耐腐蚀性和导电性","authors":"Qiang Chen, Mingxu Su, Dan Liang, Qiong Zhou, Biao Huang, E. Zhang","doi":"10.1116/6.0003601","DOIUrl":null,"url":null,"abstract":"In order to improve the corrosion resistance and conductivity of 316L stainless steel bipolar plates used for proton exchange membrane fuel cells, three Cr-containing nitride coatings were deposited on 316L stainless steel by multiarc ion plating. First, the microstructure, composition, and contact angle of the three coatings were systematically investigated. Then, electrochemical impedance spectroscopy, potentiodynamic polarization, potentiostatic polarization (PSP), and interfacial contact resistance (ICR) of the three coatings were also fully examined. The results revealed that CrN coating has the highest contact angle of 98.26°, indicating its superior hydrophobicity. Additionally, CrN coating performed the best corrosion resistance with the highest corrosion potential of 0.31 V, the lowest corrosion current density of 2.28 × 10−7 A cm−2, and the largest resistance. Furthermore, CrN coating showed the lowest current density during PSP tests and the smallest ICR value after corrosion. The superior corrosion resistance of CrN coating is mainly attributed to its decreased pore density caused by vacancylike defects and its uniform structure. This article provided evidence for the potential application of CrN coating to bipolar plates.","PeriodicalId":509398,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corrosion resistance and conductivity of CrN, CrAlN, and CrTiN coatings applied to bipolar plates for proton exchange membrane fuel cells\",\"authors\":\"Qiang Chen, Mingxu Su, Dan Liang, Qiong Zhou, Biao Huang, E. Zhang\",\"doi\":\"10.1116/6.0003601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the corrosion resistance and conductivity of 316L stainless steel bipolar plates used for proton exchange membrane fuel cells, three Cr-containing nitride coatings were deposited on 316L stainless steel by multiarc ion plating. First, the microstructure, composition, and contact angle of the three coatings were systematically investigated. Then, electrochemical impedance spectroscopy, potentiodynamic polarization, potentiostatic polarization (PSP), and interfacial contact resistance (ICR) of the three coatings were also fully examined. The results revealed that CrN coating has the highest contact angle of 98.26°, indicating its superior hydrophobicity. Additionally, CrN coating performed the best corrosion resistance with the highest corrosion potential of 0.31 V, the lowest corrosion current density of 2.28 × 10−7 A cm−2, and the largest resistance. Furthermore, CrN coating showed the lowest current density during PSP tests and the smallest ICR value after corrosion. The superior corrosion resistance of CrN coating is mainly attributed to its decreased pore density caused by vacancylike defects and its uniform structure. This article provided evidence for the potential application of CrN coating to bipolar plates.\",\"PeriodicalId\":509398,\"journal\":{\"name\":\"Journal of Vacuum Science & Technology A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vacuum Science & Technology A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0003601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0003601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高质子交换膜燃料电池用 316L 不锈钢双极板的耐腐蚀性和导电性,通过多弧离子镀在 316L 不锈钢上沉积了三种含铬氮化物涂层。首先,系统研究了三种镀层的微观结构、成分和接触角。然后,还对三种镀层的电化学阻抗谱、电位极化、电位静态极化(PSP)和界面接触电阻(ICR)进行了全面研究。结果表明,CrN 涂层的接触角最大,达到 98.26°,表明其具有优异的疏水性。此外,CrN 涂层的耐腐蚀性能最好,腐蚀电位最高,为 0.31 V,腐蚀电流密度最低,为 2.28 × 10-7 A cm-2,电阻最大。此外,CrN 涂层在 PSP 测试中的电流密度最低,腐蚀后的 ICR 值最小。CrN 涂层的优异耐腐蚀性主要归功于其空泡缺陷导致的孔隙密度降低及其均匀的结构。这篇文章为 CrN 涂层在双极板上的潜在应用提供了证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Corrosion resistance and conductivity of CrN, CrAlN, and CrTiN coatings applied to bipolar plates for proton exchange membrane fuel cells
In order to improve the corrosion resistance and conductivity of 316L stainless steel bipolar plates used for proton exchange membrane fuel cells, three Cr-containing nitride coatings were deposited on 316L stainless steel by multiarc ion plating. First, the microstructure, composition, and contact angle of the three coatings were systematically investigated. Then, electrochemical impedance spectroscopy, potentiodynamic polarization, potentiostatic polarization (PSP), and interfacial contact resistance (ICR) of the three coatings were also fully examined. The results revealed that CrN coating has the highest contact angle of 98.26°, indicating its superior hydrophobicity. Additionally, CrN coating performed the best corrosion resistance with the highest corrosion potential of 0.31 V, the lowest corrosion current density of 2.28 × 10−7 A cm−2, and the largest resistance. Furthermore, CrN coating showed the lowest current density during PSP tests and the smallest ICR value after corrosion. The superior corrosion resistance of CrN coating is mainly attributed to its decreased pore density caused by vacancylike defects and its uniform structure. This article provided evidence for the potential application of CrN coating to bipolar plates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of sputtering and redeposition on the morphological profile evolution during ion-beam etching of blazed gratings Nitrogen-incorporated tetrahedral amorphous carbon optically transparent thin film electrode Effect of plasma discharge pulse length for GaN film crystallinity on sapphire substrate by high density convergent plasma sputtering device Inhibition of thermochemical erosion by different coatings attached to the barrel chamber at high temperature and supersonic environments Influence of high-temperature thermal annealing on paramagnetic point defects in silicon-rich silicon nitride films formed in a single-wafer-type low-pressure chemical vapor deposition reactor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1