泰勒试验期间铝的高应变率变形

N. V. Melekhin, A. D. Tukalov, A. A. Bobrov, V. V. Balandin, A. V. Nokhrin
{"title":"泰勒试验期间铝的高应变率变形","authors":"N. V. Melekhin, A. D. Tukalov, A. A. Bobrov, V. V. Balandin, A. V. Nokhrin","doi":"10.26896/1028-6861-2024-90-5-46-52","DOIUrl":null,"url":null,"abstract":"The aim of the study is to develop a methodology for assessing changes in the microstructure of aluminum under dynamic deformation in a rather wide range of the strain rate and strain degree. The distribution of the microstructure and the strength properties in the cross-section of pure aluminum samples (A99) after dynamic deformation according to the Taylor test were studied. The tests were carried out at room temperature using a PG-20 light-gas cannon, at sample throwing speeds of 127 and 165 m/sec. An interference microscope (Leica IM DRM) and a scanning electron microscope (Jeol JSM-6490) were used to study the aluminum microstructure; the microhardness measurements were carried out on an HVS-1000 device to study the uniformity of the strain distribution in samples. It is shown that three characteristic areas can be distinguished in aluminum samples after Taylor test: the elastic deformation zone, the plastic deformation zone, and the zone of severe plastic deformation, which is located in the area of collision of the sample with a steel barrier. It is shown that dynamic deformation reduced the grain structure from 1 – 1.1 mm to 2.5 – 3 μm at high impact velocities. An elongated grain shape is observed in the collision zone. The proposed method provided determination of the critical strain degree necessary for the onset of grain fragmentation and allowed us to explain the formation of zones of weak and severe plastic deformation. It is shown that the critical strain degree corresponding to the beginning of grain fragmentation increases from 0.18 to 0.21 with an increase in the throwing speed of the sample from 127 to 165 m/sec. In the zone of weak deformation, plastic deformation proceeds by intragrain riveting and the initial stages of grain fragmentation. In the zone of severe plastic deformation, a fine-grained microstructure is formed, which leads to an increase in the microhardness of aluminum in accordance with the Hall – Petch equation.","PeriodicalId":13559,"journal":{"name":"Industrial laboratory. Diagnostics of materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-strain rate deformation of aluminum during the Taylor test\",\"authors\":\"N. V. Melekhin, A. D. Tukalov, A. A. Bobrov, V. V. Balandin, A. V. Nokhrin\",\"doi\":\"10.26896/1028-6861-2024-90-5-46-52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of the study is to develop a methodology for assessing changes in the microstructure of aluminum under dynamic deformation in a rather wide range of the strain rate and strain degree. The distribution of the microstructure and the strength properties in the cross-section of pure aluminum samples (A99) after dynamic deformation according to the Taylor test were studied. The tests were carried out at room temperature using a PG-20 light-gas cannon, at sample throwing speeds of 127 and 165 m/sec. An interference microscope (Leica IM DRM) and a scanning electron microscope (Jeol JSM-6490) were used to study the aluminum microstructure; the microhardness measurements were carried out on an HVS-1000 device to study the uniformity of the strain distribution in samples. It is shown that three characteristic areas can be distinguished in aluminum samples after Taylor test: the elastic deformation zone, the plastic deformation zone, and the zone of severe plastic deformation, which is located in the area of collision of the sample with a steel barrier. It is shown that dynamic deformation reduced the grain structure from 1 – 1.1 mm to 2.5 – 3 μm at high impact velocities. An elongated grain shape is observed in the collision zone. The proposed method provided determination of the critical strain degree necessary for the onset of grain fragmentation and allowed us to explain the formation of zones of weak and severe plastic deformation. It is shown that the critical strain degree corresponding to the beginning of grain fragmentation increases from 0.18 to 0.21 with an increase in the throwing speed of the sample from 127 to 165 m/sec. In the zone of weak deformation, plastic deformation proceeds by intragrain riveting and the initial stages of grain fragmentation. In the zone of severe plastic deformation, a fine-grained microstructure is formed, which leads to an increase in the microhardness of aluminum in accordance with the Hall – Petch equation.\",\"PeriodicalId\":13559,\"journal\":{\"name\":\"Industrial laboratory. Diagnostics of materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial laboratory. Diagnostics of materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26896/1028-6861-2024-90-5-46-52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial laboratory. Diagnostics of materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26896/1028-6861-2024-90-5-46-52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在开发一种方法,用于评估铝在动态变形条件下微观结构在相当宽的应变率和应变度范围内的变化。根据泰勒试验,研究了动态变形后纯铝样品(A99)横截面上的微观结构分布和强度特性。试验在室温下使用 PG-20 光气炮进行,样品抛射速度分别为 127 米/秒和 165 米/秒。使用干涉显微镜(Leica IM DRM)和扫描电子显微镜(Jeol JSM-6490)研究了铝的微观结构;使用 HVS-1000 设备进行了显微硬度测量,以研究样品中应变分布的均匀性。结果表明,在泰勒试验后,铝样品可分为三个特征区域:弹性变形区、塑性变形区和严重塑性变形区(位于样品与钢屏障碰撞的区域)。结果表明,在高冲击速度下,动态变形将晶粒结构从 1 - 1.1 mm 缩小到 2.5 - 3 μm。在碰撞区观察到拉长的晶粒形状。所提出的方法确定了晶粒破碎开始所需的临界应变度,并使我们能够解释弱塑性变形区和严重塑性变形区的形成。结果表明,随着样品抛掷速度从 127 米/秒增加到 165 米/秒,与晶粒破碎开始相对应的临界应变度从 0.18 增加到 0.21。在弱变形区,塑性变形通过晶粒内铆接和晶粒破碎的初始阶段进行。在严重塑性变形区,形成了细粒微结构,根据霍尔-佩奇方程,这导致铝的显微硬度增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-strain rate deformation of aluminum during the Taylor test
The aim of the study is to develop a methodology for assessing changes in the microstructure of aluminum under dynamic deformation in a rather wide range of the strain rate and strain degree. The distribution of the microstructure and the strength properties in the cross-section of pure aluminum samples (A99) after dynamic deformation according to the Taylor test were studied. The tests were carried out at room temperature using a PG-20 light-gas cannon, at sample throwing speeds of 127 and 165 m/sec. An interference microscope (Leica IM DRM) and a scanning electron microscope (Jeol JSM-6490) were used to study the aluminum microstructure; the microhardness measurements were carried out on an HVS-1000 device to study the uniformity of the strain distribution in samples. It is shown that three characteristic areas can be distinguished in aluminum samples after Taylor test: the elastic deformation zone, the plastic deformation zone, and the zone of severe plastic deformation, which is located in the area of collision of the sample with a steel barrier. It is shown that dynamic deformation reduced the grain structure from 1 – 1.1 mm to 2.5 – 3 μm at high impact velocities. An elongated grain shape is observed in the collision zone. The proposed method provided determination of the critical strain degree necessary for the onset of grain fragmentation and allowed us to explain the formation of zones of weak and severe plastic deformation. It is shown that the critical strain degree corresponding to the beginning of grain fragmentation increases from 0.18 to 0.21 with an increase in the throwing speed of the sample from 127 to 165 m/sec. In the zone of weak deformation, plastic deformation proceeds by intragrain riveting and the initial stages of grain fragmentation. In the zone of severe plastic deformation, a fine-grained microstructure is formed, which leads to an increase in the microhardness of aluminum in accordance with the Hall – Petch equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of the use of polyvinyl alcohol in the manufacture of pressed samples for X-ray fluorescence analysis Determination of the criterion for the morphological classification of etching pits formed in InSb single crystals grown by the Czochralski method in the crystallographic direction [111] and doped with tellurium The paradigm shift in mathematical methods of research Low cycle fracture resistance of the superalloy at single- and two-frequency modes of loading Fatigue fracture of 316L steel manufactured by selective laser melting method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1