Roxana Nicoleta Gavril (Rațu), O. Constantin, Elena Enachi, Florina Stoica, F. Lipșa, N. Stănciuc, I. Aprodu, G. Râpeanu
{"title":"利用中心复合设计优化影响南瓜皮抗氧化活性和类胡萝卜素浓度的参数","authors":"Roxana Nicoleta Gavril (Rațu), O. Constantin, Elena Enachi, Florina Stoica, F. Lipșa, N. Stănciuc, I. Aprodu, G. Râpeanu","doi":"10.3390/plants13111447","DOIUrl":null,"url":null,"abstract":"It has been discovered that the peel of a pumpkin (Cucurbita maxima), regarded as a waste product of pumpkin processing, has significant amounts of carotenoids and other antioxidants. This study aims to identify the most effective extraction parameters for an ultrasonic-assisted extraction method to extract the total carotenoids (TCs) and assess the antioxidant activity (AA) of pumpkin peel. To determine the effects of the extraction time, temperature, and material-to-solvent ratio on the recovery of TCs and AA, a response surface methodology utilizing the central composite design (CCD) was used. The extraction temperature (6.25–98.75 °C), extraction duration (13.98–128.98 min), and solvent ratio (0.23–50.23 mL) were the variables studied in the coded form of the experimental plan. The carotenoid concentration varied from 0.53 to 1.06 mg/g DW, while the AA varied from 0.34 to 7.28 µM TE/g DW. The findings indicated that the optimal extraction parameters were an 80 °C temperature, a 10 mL solvent ratio, and a 100 min extraction time. The study confirmed that the optimum extraction conditions resulted in an experimental TC yield of 0.97 mg/g DW and an AA of 7.25 µM TE/g DW. Overall, it should be emphasized that the extraction process can be enhanced by setting the operating factors to maximize the model responses.","PeriodicalId":509472,"journal":{"name":"Plants","volume":"104 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of the Parameters Influencing the Antioxidant Activity and Concentration of Carotenoids Extracted from Pumpkin Peel Using a Central Composite Design\",\"authors\":\"Roxana Nicoleta Gavril (Rațu), O. Constantin, Elena Enachi, Florina Stoica, F. Lipșa, N. Stănciuc, I. Aprodu, G. Râpeanu\",\"doi\":\"10.3390/plants13111447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has been discovered that the peel of a pumpkin (Cucurbita maxima), regarded as a waste product of pumpkin processing, has significant amounts of carotenoids and other antioxidants. This study aims to identify the most effective extraction parameters for an ultrasonic-assisted extraction method to extract the total carotenoids (TCs) and assess the antioxidant activity (AA) of pumpkin peel. To determine the effects of the extraction time, temperature, and material-to-solvent ratio on the recovery of TCs and AA, a response surface methodology utilizing the central composite design (CCD) was used. The extraction temperature (6.25–98.75 °C), extraction duration (13.98–128.98 min), and solvent ratio (0.23–50.23 mL) were the variables studied in the coded form of the experimental plan. The carotenoid concentration varied from 0.53 to 1.06 mg/g DW, while the AA varied from 0.34 to 7.28 µM TE/g DW. The findings indicated that the optimal extraction parameters were an 80 °C temperature, a 10 mL solvent ratio, and a 100 min extraction time. The study confirmed that the optimum extraction conditions resulted in an experimental TC yield of 0.97 mg/g DW and an AA of 7.25 µM TE/g DW. Overall, it should be emphasized that the extraction process can be enhanced by setting the operating factors to maximize the model responses.\",\"PeriodicalId\":509472,\"journal\":{\"name\":\"Plants\",\"volume\":\"104 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plants\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/plants13111447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/plants13111447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization of the Parameters Influencing the Antioxidant Activity and Concentration of Carotenoids Extracted from Pumpkin Peel Using a Central Composite Design
It has been discovered that the peel of a pumpkin (Cucurbita maxima), regarded as a waste product of pumpkin processing, has significant amounts of carotenoids and other antioxidants. This study aims to identify the most effective extraction parameters for an ultrasonic-assisted extraction method to extract the total carotenoids (TCs) and assess the antioxidant activity (AA) of pumpkin peel. To determine the effects of the extraction time, temperature, and material-to-solvent ratio on the recovery of TCs and AA, a response surface methodology utilizing the central composite design (CCD) was used. The extraction temperature (6.25–98.75 °C), extraction duration (13.98–128.98 min), and solvent ratio (0.23–50.23 mL) were the variables studied in the coded form of the experimental plan. The carotenoid concentration varied from 0.53 to 1.06 mg/g DW, while the AA varied from 0.34 to 7.28 µM TE/g DW. The findings indicated that the optimal extraction parameters were an 80 °C temperature, a 10 mL solvent ratio, and a 100 min extraction time. The study confirmed that the optimum extraction conditions resulted in an experimental TC yield of 0.97 mg/g DW and an AA of 7.25 µM TE/g DW. Overall, it should be emphasized that the extraction process can be enhanced by setting the operating factors to maximize the model responses.