岩浆岩-超岩浆岩资产的碳矿化和关键矿产资源评估途径

IF 2.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ACS Earth and Space Chemistry Pub Date : 2024-05-23 DOI:10.1021/acsearthspacechem.4c00005
C. Heath Stanfield*, Quin R. S. Miller*, Anil K. Battu, Nabajit Lahiri, Alexandra B. Nagurney, Ruoshi Cao, Emily T. Nienhuis, Donald J. DePaolo, Drew E. Latta and H. Todd Schaef, 
{"title":"岩浆岩-超岩浆岩资产的碳矿化和关键矿产资源评估途径","authors":"C. Heath Stanfield*,&nbsp;Quin R. S. Miller*,&nbsp;Anil K. Battu,&nbsp;Nabajit Lahiri,&nbsp;Alexandra B. Nagurney,&nbsp;Ruoshi Cao,&nbsp;Emily T. Nienhuis,&nbsp;Donald J. DePaolo,&nbsp;Drew E. Latta and H. Todd Schaef,&nbsp;","doi":"10.1021/acsearthspacechem.4c00005","DOIUrl":null,"url":null,"abstract":"<p >Locating and developing ideal sites for large-scale capture and storage of carbon dioxide has become increasingly necessary due to increasing global emissions and warming. Mafic–ultramafic rocks present a unique geologic setting as they can trap injected CO<sub>2</sub> in pore space, mineralize that CO<sub>2</sub> to permanently store it as carbonate minerals, and simultaneously release critical minerals. However, these reservoirs are undercharacterized relative to sedimentary carbon storage settings. In this study, we execute a methodology for determining carbonation and critical mineral recovery potential in mafic–ultramafic reservoirs. Using an olivine-rich basalt from the island of Hawai’i, we performed petrologic and geochemical analyses to determine its chemistry, mineralogy, and pore network architecture. We use this data to first quantify the nonreactive storage resource potential and determine the bulk storage of 50 MMT of CO<sub>2</sub> in the pore space of a basalt volume test case, along with realistic P10, P50, and P90 scenarios for that same volume. Then, using the chemistry and mineralogy, we both estimate the total mineralization and critical mineral recovery potential, as well as more realistic values based on dissolution–precipitation reactions at the surface areas of pores. This storage resource estimate methodology can assist in accelerating the global commercialization of geologic carbon storage and critical mineral recovery.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon Mineralization and Critical Mineral Resource Evaluation Pathways for Mafic–Ultramafic Assets\",\"authors\":\"C. Heath Stanfield*,&nbsp;Quin R. S. Miller*,&nbsp;Anil K. Battu,&nbsp;Nabajit Lahiri,&nbsp;Alexandra B. Nagurney,&nbsp;Ruoshi Cao,&nbsp;Emily T. Nienhuis,&nbsp;Donald J. DePaolo,&nbsp;Drew E. Latta and H. Todd Schaef,&nbsp;\",\"doi\":\"10.1021/acsearthspacechem.4c00005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Locating and developing ideal sites for large-scale capture and storage of carbon dioxide has become increasingly necessary due to increasing global emissions and warming. Mafic–ultramafic rocks present a unique geologic setting as they can trap injected CO<sub>2</sub> in pore space, mineralize that CO<sub>2</sub> to permanently store it as carbonate minerals, and simultaneously release critical minerals. However, these reservoirs are undercharacterized relative to sedimentary carbon storage settings. In this study, we execute a methodology for determining carbonation and critical mineral recovery potential in mafic–ultramafic reservoirs. Using an olivine-rich basalt from the island of Hawai’i, we performed petrologic and geochemical analyses to determine its chemistry, mineralogy, and pore network architecture. We use this data to first quantify the nonreactive storage resource potential and determine the bulk storage of 50 MMT of CO<sub>2</sub> in the pore space of a basalt volume test case, along with realistic P10, P50, and P90 scenarios for that same volume. Then, using the chemistry and mineralogy, we both estimate the total mineralization and critical mineral recovery potential, as well as more realistic values based on dissolution–precipitation reactions at the surface areas of pores. This storage resource estimate methodology can assist in accelerating the global commercialization of geologic carbon storage and critical mineral recovery.</p>\",\"PeriodicalId\":15,\"journal\":{\"name\":\"ACS Earth and Space Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Earth and Space Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsearthspacechem.4c00005\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Earth and Space Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsearthspacechem.4c00005","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于全球排放和气候变暖日益严重,寻找和开发大规模捕获和封存二氧化碳的理想地点变得越来越有必要。黑云母-超黑云母岩具有独特的地质环境,因为它们可以将注入的二氧化碳封存在孔隙中,将二氧化碳矿化为碳酸盐矿物永久封存,并同时释放出关键矿物。然而,与沉积碳储存环境相比,这些储层的特征还不够明显。在这项研究中,我们采用一种方法来确定岩浆岩-超岩浆岩储层的碳化和临界矿物回收潜力。我们利用夏威夷岛的一种富含橄榄石的玄武岩,进行了岩石学和地球化学分析,以确定其化学、矿物学和孔隙网络结构。我们利用这些数据首先量化了非反应性封存资源潜力,并确定了玄武岩体积测试案例孔隙空间中 5000 万吨二氧化碳的批量封存,以及同一体积的 P10、P50 和 P90 实际情况。然后,利用化学和矿物学,我们估算了总矿化度和临界矿物回收潜力,以及基于孔隙表面区域溶解-沉淀反应的更现实的数值。这种封存资源估算方法有助于加快全球地质碳封存和关键矿物回收的商业化进程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Carbon Mineralization and Critical Mineral Resource Evaluation Pathways for Mafic–Ultramafic Assets

Locating and developing ideal sites for large-scale capture and storage of carbon dioxide has become increasingly necessary due to increasing global emissions and warming. Mafic–ultramafic rocks present a unique geologic setting as they can trap injected CO2 in pore space, mineralize that CO2 to permanently store it as carbonate minerals, and simultaneously release critical minerals. However, these reservoirs are undercharacterized relative to sedimentary carbon storage settings. In this study, we execute a methodology for determining carbonation and critical mineral recovery potential in mafic–ultramafic reservoirs. Using an olivine-rich basalt from the island of Hawai’i, we performed petrologic and geochemical analyses to determine its chemistry, mineralogy, and pore network architecture. We use this data to first quantify the nonreactive storage resource potential and determine the bulk storage of 50 MMT of CO2 in the pore space of a basalt volume test case, along with realistic P10, P50, and P90 scenarios for that same volume. Then, using the chemistry and mineralogy, we both estimate the total mineralization and critical mineral recovery potential, as well as more realistic values based on dissolution–precipitation reactions at the surface areas of pores. This storage resource estimate methodology can assist in accelerating the global commercialization of geologic carbon storage and critical mineral recovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Earth and Space Chemistry
ACS Earth and Space Chemistry Earth and Planetary Sciences-Geochemistry and Petrology
CiteScore
5.30
自引率
11.80%
发文量
249
期刊介绍: The scope of ACS Earth and Space Chemistry includes the application of analytical, experimental and theoretical chemistry to investigate research questions relevant to the Earth and Space. The journal encompasses the highly interdisciplinary nature of research in this area, while emphasizing chemistry and chemical research tools as the unifying theme. The journal publishes broadly in the domains of high- and low-temperature geochemistry, atmospheric chemistry, marine chemistry, planetary chemistry, astrochemistry, and analytical geochemistry. ACS Earth and Space Chemistry publishes Articles, Letters, Reviews, and Features to provide flexible formats to readily communicate all aspects of research in these fields.
期刊最新文献
Ethynyl Radical Hydrogen Abstraction Energetics and Kinetics Utilizing High-Level Theory Better use the following title: Pathways to Interstellar Amides via Carbamoyl (NH2CO) Isomers by Radical-Neutral Reactions on Ice Grain Mantles Seawater Redox Conditions in the Late Paleoproterozoic: Insight from the North China Craton Seasonal Contrasts in Dissolved Selenium Dynamics in Subarctic Thaw Lakes Effect of Nitrogen on the Structure and Composition of Primordial Organic Matter Analogs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1