A. P. Yzquierdo, M. Mascheroni, Edita Kizinevič, F. Khan, Hyunwoo Kim, M. A. Flechas, Nikos Tsipinakis, Saqib Haleem
{"title":"大型强子对撞机运行 3 及以后的 CMS 提交基础设施中的异构资源整合","authors":"A. P. Yzquierdo, M. Mascheroni, Edita Kizinevič, F. Khan, Hyunwoo Kim, M. A. Flechas, Nikos Tsipinakis, Saqib Haleem","doi":"10.1051/epjconf/202429504046","DOIUrl":null,"url":null,"abstract":"While the computing landscape supporting LHC experiments is currently dominated by x86 processors at WLCG sites, this configuration will evolve in the coming years. LHC collaborations will be increasingly employing HPC and Cloud facilities to process the vast amounts of data expected during the LHC Run 3 and the future HL-LHC phase. These facilities often feature diverse compute resources, including alternative CPU architectures like ARM and IBM Power, as well as a variety of GPU specifications. Using these heterogeneous resources efficiently is thus essential for the LHC collaborations reaching their future scientific goals. The Submission Infrastructure (SI) is a central element in CMS Computing, enabling resource acquisition and exploitation by CMS data processing, simulation and analysis tasks. The SI must therefore be adapted to ensure access and optimal utilization of this heterogeneous compute capacity. Some steps in this evolution have been already taken, as CMS is currently using opportunistically a small pool of GPU slots provided mainly at the CMS WLCG sites. Additionally, Power9 processors have been validated for CMS production at the Marconi-100 cluster at CINECA. This note will describe the updated capabilities of the SI to continue ensuring the efficient allocation and use of computing resources by CMS, despite their increasing diversity. The next steps towards a full integration and support of heterogeneous resources according to CMS needs will also be reported.","PeriodicalId":11731,"journal":{"name":"EPJ Web of Conferences","volume":"7 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The integration of heterogeneous resources in the CMS Submission Infrastructure for the LHC Run 3 and beyond\",\"authors\":\"A. P. Yzquierdo, M. Mascheroni, Edita Kizinevič, F. Khan, Hyunwoo Kim, M. A. Flechas, Nikos Tsipinakis, Saqib Haleem\",\"doi\":\"10.1051/epjconf/202429504046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While the computing landscape supporting LHC experiments is currently dominated by x86 processors at WLCG sites, this configuration will evolve in the coming years. LHC collaborations will be increasingly employing HPC and Cloud facilities to process the vast amounts of data expected during the LHC Run 3 and the future HL-LHC phase. These facilities often feature diverse compute resources, including alternative CPU architectures like ARM and IBM Power, as well as a variety of GPU specifications. Using these heterogeneous resources efficiently is thus essential for the LHC collaborations reaching their future scientific goals. The Submission Infrastructure (SI) is a central element in CMS Computing, enabling resource acquisition and exploitation by CMS data processing, simulation and analysis tasks. The SI must therefore be adapted to ensure access and optimal utilization of this heterogeneous compute capacity. Some steps in this evolution have been already taken, as CMS is currently using opportunistically a small pool of GPU slots provided mainly at the CMS WLCG sites. Additionally, Power9 processors have been validated for CMS production at the Marconi-100 cluster at CINECA. This note will describe the updated capabilities of the SI to continue ensuring the efficient allocation and use of computing resources by CMS, despite their increasing diversity. The next steps towards a full integration and support of heterogeneous resources according to CMS needs will also be reported.\",\"PeriodicalId\":11731,\"journal\":{\"name\":\"EPJ Web of Conferences\",\"volume\":\"7 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Web of Conferences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/epjconf/202429504046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Web of Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjconf/202429504046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
尽管支持大型强子对撞机实验的计算环境目前主要由WLCG场址的X86处理器主导,但这种配置在未来几年内还将不断演变。大型强子对撞机合作组织将越来越多地采用高性能计算和云计算设施来处理大型强子对撞机运行 3 阶段和未来 HL-LHC 阶段的大量数据。这些设施通常具有多种计算资源,包括 ARM 和 IBM Power 等替代 CPU 架构以及各种 GPU 规格。因此,高效利用这些异构资源对于大型强子对撞机合作组织实现未来的科学目标至关重要。提交基础设施(SI)是 CMS 计算的核心要素,它使 CMS 数据处理、模拟和分析任务能够获取和利用资源。因此,必须对 SI 进行调整,以确保对这种异构计算能力的访问和优化利用。目前,CMS 正在利用主要由 CMS WLCG 站点提供的少量 GPU 插槽。此外,Power9 处理器已经通过了 CINECA 马可尼-100 集群的 CMS 生产验证。本说明将介绍 SI 的最新功能,以继续确保 CMS 有效分配和使用计算资源,尽管这些资源日益多样化。此外,还将报告根据 CMS 需求全面整合和支持异构资源的下一步措施。
The integration of heterogeneous resources in the CMS Submission Infrastructure for the LHC Run 3 and beyond
While the computing landscape supporting LHC experiments is currently dominated by x86 processors at WLCG sites, this configuration will evolve in the coming years. LHC collaborations will be increasingly employing HPC and Cloud facilities to process the vast amounts of data expected during the LHC Run 3 and the future HL-LHC phase. These facilities often feature diverse compute resources, including alternative CPU architectures like ARM and IBM Power, as well as a variety of GPU specifications. Using these heterogeneous resources efficiently is thus essential for the LHC collaborations reaching their future scientific goals. The Submission Infrastructure (SI) is a central element in CMS Computing, enabling resource acquisition and exploitation by CMS data processing, simulation and analysis tasks. The SI must therefore be adapted to ensure access and optimal utilization of this heterogeneous compute capacity. Some steps in this evolution have been already taken, as CMS is currently using opportunistically a small pool of GPU slots provided mainly at the CMS WLCG sites. Additionally, Power9 processors have been validated for CMS production at the Marconi-100 cluster at CINECA. This note will describe the updated capabilities of the SI to continue ensuring the efficient allocation and use of computing resources by CMS, despite their increasing diversity. The next steps towards a full integration and support of heterogeneous resources according to CMS needs will also be reported.