使用 Dcgan 和 Gan 生成人脸

Manimegala M, Gokulraj V, Karisni K, Manisha S
{"title":"使用 Dcgan 和 Gan 生成人脸","authors":"Manimegala M, Gokulraj V, Karisni K, Manisha S","doi":"10.47392/irjaeh.2024.0186","DOIUrl":null,"url":null,"abstract":"Generative Adversarial Networks (GANs) are prominent in unsupervised learning for their exceptional data-generation capabilities. GANs utilize backpropagation and a competitive process between a Generative Network (G) and a Discriminative Network (D). In this setup, G generates artificial images while D distinguishes real from artificial ones, enhancing G's ability to create realistic images. Deep Convolutional Generative Adversarial Networks (DCGAN) are particularly notable, using a convolutional architecture to produce high-quality human face images. This study trains DCGAN on the CelebFaces Attributes Dataset (CelebA), demonstrating its ability to generate human faces from unlabeled data and random noise. Evaluation is done quantitatively using the Structural Similarities Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR) to assess image quality. Additionally, this abstract will compare the effectiveness of GANs and DCGANs in human face generation.","PeriodicalId":517766,"journal":{"name":"International Research Journal on Advanced Engineering Hub (IRJAEH)","volume":"42 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generating Human Face with Dcgan and Gan\",\"authors\":\"Manimegala M, Gokulraj V, Karisni K, Manisha S\",\"doi\":\"10.47392/irjaeh.2024.0186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generative Adversarial Networks (GANs) are prominent in unsupervised learning for their exceptional data-generation capabilities. GANs utilize backpropagation and a competitive process between a Generative Network (G) and a Discriminative Network (D). In this setup, G generates artificial images while D distinguishes real from artificial ones, enhancing G's ability to create realistic images. Deep Convolutional Generative Adversarial Networks (DCGAN) are particularly notable, using a convolutional architecture to produce high-quality human face images. This study trains DCGAN on the CelebFaces Attributes Dataset (CelebA), demonstrating its ability to generate human faces from unlabeled data and random noise. Evaluation is done quantitatively using the Structural Similarities Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR) to assess image quality. Additionally, this abstract will compare the effectiveness of GANs and DCGANs in human face generation.\",\"PeriodicalId\":517766,\"journal\":{\"name\":\"International Research Journal on Advanced Engineering Hub (IRJAEH)\",\"volume\":\"42 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Research Journal on Advanced Engineering Hub (IRJAEH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47392/irjaeh.2024.0186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Research Journal on Advanced Engineering Hub (IRJAEH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47392/irjaeh.2024.0186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生成对抗网络(GANs)因其卓越的数据生成能力而在无监督学习领域大放异彩。GANs 利用反向传播和生成网络 (G) 与判别网络 (D) 之间的竞争过程。在这一设置中,G 生成人工图像,而 D 区分真实图像和人工图像,从而增强了 G 生成逼真图像的能力。深度卷积生成对抗网络(DCGAN)尤其引人注目,它使用卷积架构生成高质量的人脸图像。本研究在 CelebFaces Attributes Dataset (CelebA) 上对 DCGAN 进行了训练,展示了它从无标记数据和随机噪声中生成人脸的能力。研究使用结构相似性指数(SSIM)和峰值信噪比(PSNR)对图像质量进行定量评估。此外,本摘要还将比较 GAN 和 DCGAN 在生成人脸方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generating Human Face with Dcgan and Gan
Generative Adversarial Networks (GANs) are prominent in unsupervised learning for their exceptional data-generation capabilities. GANs utilize backpropagation and a competitive process between a Generative Network (G) and a Discriminative Network (D). In this setup, G generates artificial images while D distinguishes real from artificial ones, enhancing G's ability to create realistic images. Deep Convolutional Generative Adversarial Networks (DCGAN) are particularly notable, using a convolutional architecture to produce high-quality human face images. This study trains DCGAN on the CelebFaces Attributes Dataset (CelebA), demonstrating its ability to generate human faces from unlabeled data and random noise. Evaluation is done quantitatively using the Structural Similarities Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR) to assess image quality. Additionally, this abstract will compare the effectiveness of GANs and DCGANs in human face generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Load Balancing in Cloud Computing: Improving Efficiency and Performance in Real Life Applications Optimizing Renewable Energy Integration in Green Building Projects: Addressing Barriers and Enhancing Energy Performance Drone Technology in Construction Industry Addressing Workplace Harassment and Discrimination: Strategies for Creating Inclusive Environments in Construction Engineering Smart Plant Health Control System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1