Yazhou Zhang, hailong zhang, Jie WANG, Jian Li, Xinchen YE, ShuangQiang Wang, Xu Du, Han Wu, Ting ZHANG, Shao-Cong Guo
{"title":"UWLPIPE:超宽带宽脉冲星数据处理管道","authors":"Yazhou Zhang, hailong zhang, Jie WANG, Jian Li, Xinchen YE, ShuangQiang Wang, Xu Du, Han Wu, Ting ZHANG, Shao-Cong Guo","doi":"10.1088/1674-4527/ad4fc4","DOIUrl":null,"url":null,"abstract":"\n For real-time processing of ultra-wide bandwidth low-frequency pulsar base band data, we designed and implemented an ultra-wide bandwidth pulsar data processing pipeline(UWLPIPE) based on the shared ringbuffer and GPU parallel technology. UWLPIPE runs on the GPU cluster and can simultaneously receive multiple 128 MHz dual-polarization VDIF data packets preprocessed by the front-end FPGA. After aligning the dual-polarization data, multiple 128M subband data are packaged into PSRDADA baseband data or multi channel coherent dispersion filterbank data, and multiple subband filterbank data can be spliced into wideband data after time alignment. We used the Nanshan 26-meter radio telescope with L-band receiver at 964-1732 MHz to observe multiple pulsars. Finally, we processed the data using DSPSR software, and the results showed that each subband could correctly fold out the pulse profile, and the wideband pulse profile accumulated by multiple subbands could be correctly aligned.","PeriodicalId":509923,"journal":{"name":"Research in Astronomy and Astrophysics","volume":"20 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UWLPIPE: Ultra-Wide Bandwidth Pulsar Data Processing Pipeline\",\"authors\":\"Yazhou Zhang, hailong zhang, Jie WANG, Jian Li, Xinchen YE, ShuangQiang Wang, Xu Du, Han Wu, Ting ZHANG, Shao-Cong Guo\",\"doi\":\"10.1088/1674-4527/ad4fc4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n For real-time processing of ultra-wide bandwidth low-frequency pulsar base band data, we designed and implemented an ultra-wide bandwidth pulsar data processing pipeline(UWLPIPE) based on the shared ringbuffer and GPU parallel technology. UWLPIPE runs on the GPU cluster and can simultaneously receive multiple 128 MHz dual-polarization VDIF data packets preprocessed by the front-end FPGA. After aligning the dual-polarization data, multiple 128M subband data are packaged into PSRDADA baseband data or multi channel coherent dispersion filterbank data, and multiple subband filterbank data can be spliced into wideband data after time alignment. We used the Nanshan 26-meter radio telescope with L-band receiver at 964-1732 MHz to observe multiple pulsars. Finally, we processed the data using DSPSR software, and the results showed that each subband could correctly fold out the pulse profile, and the wideband pulse profile accumulated by multiple subbands could be correctly aligned.\",\"PeriodicalId\":509923,\"journal\":{\"name\":\"Research in Astronomy and Astrophysics\",\"volume\":\"20 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Astronomy and Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1674-4527/ad4fc4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Astronomy and Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1674-4527/ad4fc4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
UWLPIPE: Ultra-Wide Bandwidth Pulsar Data Processing Pipeline
For real-time processing of ultra-wide bandwidth low-frequency pulsar base band data, we designed and implemented an ultra-wide bandwidth pulsar data processing pipeline(UWLPIPE) based on the shared ringbuffer and GPU parallel technology. UWLPIPE runs on the GPU cluster and can simultaneously receive multiple 128 MHz dual-polarization VDIF data packets preprocessed by the front-end FPGA. After aligning the dual-polarization data, multiple 128M subband data are packaged into PSRDADA baseband data or multi channel coherent dispersion filterbank data, and multiple subband filterbank data can be spliced into wideband data after time alignment. We used the Nanshan 26-meter radio telescope with L-band receiver at 964-1732 MHz to observe multiple pulsars. Finally, we processed the data using DSPSR software, and the results showed that each subband could correctly fold out the pulse profile, and the wideband pulse profile accumulated by multiple subbands could be correctly aligned.