Ajay V. Gawali, Surendra Sasikumar Jampa, Manish Kumar Sinha
{"title":"氧化石墨烯浸渍沸石咪唑酸盐框架-8 混合基质膜的合成与表征,用于增强 CO2/CH4 分离效果","authors":"Ajay V. Gawali, Surendra Sasikumar Jampa, Manish Kumar Sinha","doi":"10.1002/apj.3094","DOIUrl":null,"url":null,"abstract":"<p>For the in situ growth method, the reaction time is important because increasing the reaction time may make it possible for the crystallized ZIF-8 to fully cover the GO sheets; the excess of ZIF-8 particles reduces the aspect ratio of the GO sheet. The reaction time will significantly change the morphology, affecting the composite's ability to absorb selective gas and, in turn, affect the gas selectivity. The present work identifies the reaction time for in situ growth of ZIF-8 nanoparticles on GO sheets. The composite was synthesized at different reaction times of 2, 4, 6, and 8 h and incorporated into the PSF matrix. The fabricated membranes were characterized by FTIR, TGA, SEM, and XRD. The novel synthesized reaction time (6 h) was identified for better enhancement of CO<sub>2</sub>/CH<sub>4</sub> separation. For pure gas studies, the results investigated that the CO<sub>2</sub> permeability and CO<sub>2</sub>/CH<sub>4</sub> selectivity were increased by 223% and 98%, respectively, compared with plain PSF membrane. In mixed gas (CO<sub>2</sub>/CH<sub>4</sub>) studies, the CO<sub>2</sub> permeability and CO<sub>2</sub>CH<sub>4</sub> selectivity were increased by 349% and 854%, respectively, compared with plain PSF membrane. Hence, the in situ growth method helps synthesize MOF@GO composites in the application of gas separation.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and characterization of mixed matrix membranes with graphene oxide-impregnated zeolitic imidazolate framework-8 for enhanced CO2/CH4 separation\",\"authors\":\"Ajay V. Gawali, Surendra Sasikumar Jampa, Manish Kumar Sinha\",\"doi\":\"10.1002/apj.3094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For the in situ growth method, the reaction time is important because increasing the reaction time may make it possible for the crystallized ZIF-8 to fully cover the GO sheets; the excess of ZIF-8 particles reduces the aspect ratio of the GO sheet. The reaction time will significantly change the morphology, affecting the composite's ability to absorb selective gas and, in turn, affect the gas selectivity. The present work identifies the reaction time for in situ growth of ZIF-8 nanoparticles on GO sheets. The composite was synthesized at different reaction times of 2, 4, 6, and 8 h and incorporated into the PSF matrix. The fabricated membranes were characterized by FTIR, TGA, SEM, and XRD. The novel synthesized reaction time (6 h) was identified for better enhancement of CO<sub>2</sub>/CH<sub>4</sub> separation. For pure gas studies, the results investigated that the CO<sub>2</sub> permeability and CO<sub>2</sub>/CH<sub>4</sub> selectivity were increased by 223% and 98%, respectively, compared with plain PSF membrane. In mixed gas (CO<sub>2</sub>/CH<sub>4</sub>) studies, the CO<sub>2</sub> permeability and CO<sub>2</sub>CH<sub>4</sub> selectivity were increased by 349% and 854%, respectively, compared with plain PSF membrane. Hence, the in situ growth method helps synthesize MOF@GO composites in the application of gas separation.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/apj.3094\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apj.3094","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis and characterization of mixed matrix membranes with graphene oxide-impregnated zeolitic imidazolate framework-8 for enhanced CO2/CH4 separation
For the in situ growth method, the reaction time is important because increasing the reaction time may make it possible for the crystallized ZIF-8 to fully cover the GO sheets; the excess of ZIF-8 particles reduces the aspect ratio of the GO sheet. The reaction time will significantly change the morphology, affecting the composite's ability to absorb selective gas and, in turn, affect the gas selectivity. The present work identifies the reaction time for in situ growth of ZIF-8 nanoparticles on GO sheets. The composite was synthesized at different reaction times of 2, 4, 6, and 8 h and incorporated into the PSF matrix. The fabricated membranes were characterized by FTIR, TGA, SEM, and XRD. The novel synthesized reaction time (6 h) was identified for better enhancement of CO2/CH4 separation. For pure gas studies, the results investigated that the CO2 permeability and CO2/CH4 selectivity were increased by 223% and 98%, respectively, compared with plain PSF membrane. In mixed gas (CO2/CH4) studies, the CO2 permeability and CO2CH4 selectivity were increased by 349% and 854%, respectively, compared with plain PSF membrane. Hence, the in situ growth method helps synthesize MOF@GO composites in the application of gas separation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.