Wan Nabila Mohd Fairuz, Illani Mohd Nawi, Mohamad Radzi Ahmad, Ramani Kannan
{"title":"用于管道振动型压电能量收集器原型开发的蛇形悬臂梁的实验和性能分析","authors":"Wan Nabila Mohd Fairuz, Illani Mohd Nawi, Mohamad Radzi Ahmad, Ramani Kannan","doi":"10.1093/ce/zkae042","DOIUrl":null,"url":null,"abstract":"\n Pipelines produce vibrations during fluids or gas transportation. These vibrations are less likely to cause structural failure as they exist in a small magnitude and can be harvested into useful energy. This paper presents a study on the piezoelectric energy harvesting method utilising mechanical energy from pipeline vibration into electrical energy. The performance of the serpentine-shaped piezoelectric cantilever beam was observed to check if the design can produce the highest output voltage within the allowable vibration region of the pipeline from 10 Hz to 300 Hz through finite element analysis in COMSOL Multiphysics software. In addition, this study investigates the energy harvesting potential of the proposed design under real pipeline vibration conditions through a lab vibration test. The harvested energy output is evaluated based on various vibration frequencies and amplitudes, which gives an idea of the device and its performance in different operating conditions. The experiment result shows that the energy harvester produced an open circuit voltage of 10.28 V to 15.45 V with 1 g vibration acceleration. The results of this research will contribute to the development of efficient piezoelectric energy harvesters adapted to pipeline environments.","PeriodicalId":36703,"journal":{"name":"Clean Energy","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experiment and performance analysis of serpentine-shaped cantilever beam for pipeline vibration-based piezoelectric energy harvester prototype development\",\"authors\":\"Wan Nabila Mohd Fairuz, Illani Mohd Nawi, Mohamad Radzi Ahmad, Ramani Kannan\",\"doi\":\"10.1093/ce/zkae042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Pipelines produce vibrations during fluids or gas transportation. These vibrations are less likely to cause structural failure as they exist in a small magnitude and can be harvested into useful energy. This paper presents a study on the piezoelectric energy harvesting method utilising mechanical energy from pipeline vibration into electrical energy. The performance of the serpentine-shaped piezoelectric cantilever beam was observed to check if the design can produce the highest output voltage within the allowable vibration region of the pipeline from 10 Hz to 300 Hz through finite element analysis in COMSOL Multiphysics software. In addition, this study investigates the energy harvesting potential of the proposed design under real pipeline vibration conditions through a lab vibration test. The harvested energy output is evaluated based on various vibration frequencies and amplitudes, which gives an idea of the device and its performance in different operating conditions. The experiment result shows that the energy harvester produced an open circuit voltage of 10.28 V to 15.45 V with 1 g vibration acceleration. The results of this research will contribute to the development of efficient piezoelectric energy harvesters adapted to pipeline environments.\",\"PeriodicalId\":36703,\"journal\":{\"name\":\"Clean Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clean Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ce/zkae042\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ce/zkae042","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
管道在流体或气体运输过程中会产生振动。由于这些振动的幅度较小,因此不太可能导致结构性故障,而且可以被采集为有用的能量。本文介绍了利用管道振动产生的机械能转化为电能的压电能量采集方法。通过 COMSOL Multiphysics 软件中的有限元分析,观察了蛇形压电悬臂梁的性能,以检查该设计是否能在 10 Hz 至 300 Hz 的管道允许振动区域内产生最高的输出电压。此外,本研究还通过实验室振动测试,研究了拟议设计在实际管道振动条件下的能量采集潜力。根据不同的振动频率和振幅对能量收集输出进行评估,从而了解设备及其在不同工作条件下的性能。实验结果表明,能量收集器在 1 g 的振动加速度下能产生 10.28 V 至 15.45 V 的开路电压。这项研究成果将有助于开发适用于管道环境的高效压电能量收集器。
Experiment and performance analysis of serpentine-shaped cantilever beam for pipeline vibration-based piezoelectric energy harvester prototype development
Pipelines produce vibrations during fluids or gas transportation. These vibrations are less likely to cause structural failure as they exist in a small magnitude and can be harvested into useful energy. This paper presents a study on the piezoelectric energy harvesting method utilising mechanical energy from pipeline vibration into electrical energy. The performance of the serpentine-shaped piezoelectric cantilever beam was observed to check if the design can produce the highest output voltage within the allowable vibration region of the pipeline from 10 Hz to 300 Hz through finite element analysis in COMSOL Multiphysics software. In addition, this study investigates the energy harvesting potential of the proposed design under real pipeline vibration conditions through a lab vibration test. The harvested energy output is evaluated based on various vibration frequencies and amplitudes, which gives an idea of the device and its performance in different operating conditions. The experiment result shows that the energy harvester produced an open circuit voltage of 10.28 V to 15.45 V with 1 g vibration acceleration. The results of this research will contribute to the development of efficient piezoelectric energy harvesters adapted to pipeline environments.