使用非连续双粘度模型分析三维流场和 Claviaster libycus 周围的局部冲刷行为

IF 1.5 4区 工程技术 Q3 MECHANICS Journal of Mechanics Pub Date : 2024-05-22 DOI:10.1093/jom/ufae019
Pin-Jie Lin, Tso-Ren Wu, Jih-Pai Lin, Mei-Hui Chuang, Yi-Xuan Huang, Jia-Jie Chi
{"title":"使用非连续双粘度模型分析三维流场和 Claviaster libycus 周围的局部冲刷行为","authors":"Pin-Jie Lin, Tso-Ren Wu, Jih-Pai Lin, Mei-Hui Chuang, Yi-Xuan Huang, Jia-Jie Chi","doi":"10.1093/jom/ufae019","DOIUrl":null,"url":null,"abstract":"\n Previous studies have suggested that irregular echinoids exhibit higher survival rates than regular echinoids following mass extinctions. This study focuses on the irregular echinoid Claviaster libycus, investigating its flow field and scour behavior under extreme water flow conditions through numerical simulations and experiments. The numerical model Splash3D used in this study was modified from the open-source code Truchas developed by the U.S. National Laboratory. Splash3D solves the three-dimensional incompressible Navier-Stokes Eqs.. The fluid volume method describes the water surface kinematics and sand surface kinematics. Since Claviaster libycus is semi-submerged in the sand, a discontinuous bi-viscosity model describes the rheological behavior of the bed material. The research findings indicate that when the gonopore of Claviaster libycus faces downstream, there is no evident horseshoe vortex flow, which contributes to reducing the occurrence of localized scour. This also validates the hypothesis of this study: the transition of echinoids from pentaradial symmetry to bilateral symmetry assists in stabilizing bottom sediments and reducing localized scour.","PeriodicalId":50136,"journal":{"name":"Journal of Mechanics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using the Discontinuous Bi-viscosity model to analyze the three-dimensional flow field and local scour behavior around the Claviaster libycus\",\"authors\":\"Pin-Jie Lin, Tso-Ren Wu, Jih-Pai Lin, Mei-Hui Chuang, Yi-Xuan Huang, Jia-Jie Chi\",\"doi\":\"10.1093/jom/ufae019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Previous studies have suggested that irregular echinoids exhibit higher survival rates than regular echinoids following mass extinctions. This study focuses on the irregular echinoid Claviaster libycus, investigating its flow field and scour behavior under extreme water flow conditions through numerical simulations and experiments. The numerical model Splash3D used in this study was modified from the open-source code Truchas developed by the U.S. National Laboratory. Splash3D solves the three-dimensional incompressible Navier-Stokes Eqs.. The fluid volume method describes the water surface kinematics and sand surface kinematics. Since Claviaster libycus is semi-submerged in the sand, a discontinuous bi-viscosity model describes the rheological behavior of the bed material. The research findings indicate that when the gonopore of Claviaster libycus faces downstream, there is no evident horseshoe vortex flow, which contributes to reducing the occurrence of localized scour. This also validates the hypothesis of this study: the transition of echinoids from pentaradial symmetry to bilateral symmetry assists in stabilizing bottom sediments and reducing localized scour.\",\"PeriodicalId\":50136,\"journal\":{\"name\":\"Journal of Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jom/ufae019\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jom/ufae019","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

以往的研究表明,不规则回声类动物在大规模灭绝后的存活率高于规则回声类动物。本研究以不规则回纹类动物 Claviaster libycus 为研究对象,通过数值模拟和实验研究其在极端水流条件下的流场和冲刷行为。本研究使用的数值模型 Splash3D 是由美国国家实验室开发的开源代码 Truchas 修改而成。Splash3D 可求解三维不可压缩纳维-斯托克斯方程。流体容积法描述了水面运动学和沙面运动学。由于 Claviaster libycus 是半浸没在沙子中的,因此不连续的双粘度模型描述了床层材料的流变行为。研究结果表明,当 Claviaster libycus 的生殖孔朝向下游时,不会出现明显的马蹄涡流,这有助于减少局部冲刷的发生。这也验证了本研究的假设:回声类动物从五边形对称过渡到双边对称有助于稳定海底沉积物和减少局部冲刷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using the Discontinuous Bi-viscosity model to analyze the three-dimensional flow field and local scour behavior around the Claviaster libycus
Previous studies have suggested that irregular echinoids exhibit higher survival rates than regular echinoids following mass extinctions. This study focuses on the irregular echinoid Claviaster libycus, investigating its flow field and scour behavior under extreme water flow conditions through numerical simulations and experiments. The numerical model Splash3D used in this study was modified from the open-source code Truchas developed by the U.S. National Laboratory. Splash3D solves the three-dimensional incompressible Navier-Stokes Eqs.. The fluid volume method describes the water surface kinematics and sand surface kinematics. Since Claviaster libycus is semi-submerged in the sand, a discontinuous bi-viscosity model describes the rheological behavior of the bed material. The research findings indicate that when the gonopore of Claviaster libycus faces downstream, there is no evident horseshoe vortex flow, which contributes to reducing the occurrence of localized scour. This also validates the hypothesis of this study: the transition of echinoids from pentaradial symmetry to bilateral symmetry assists in stabilizing bottom sediments and reducing localized scour.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mechanics
Journal of Mechanics 物理-力学
CiteScore
3.20
自引率
11.80%
发文量
20
审稿时长
6 months
期刊介绍: The objective of the Journal of Mechanics is to provide an international forum to foster exchange of ideas among mechanics communities in different parts of world. The Journal of Mechanics publishes original research in all fields of theoretical and applied mechanics. The Journal especially welcomes papers that are related to recent technological advances. The contributions, which may be analytical, experimental or numerical, should be of significance to the progress of mechanics. Papers which are merely illustrations of established principles and procedures will generally not be accepted. Reports that are of technical interest are published as short articles. Review articles are published only by invitation.
期刊最新文献
Auxetic metamaterial inspired by the seesaw motion Damage Creep Model and Application for Sandy Mudstone Considering the Effect of Immersion Deterioration Numerical Study of Motorbike Aerodynamic Wing Kit Power-law fluid annular flows between concentric rotating spheres subject to hydrodynamic slip Numerical Prediction of the Aerodynamics and Aeroacoustics of a 25 kW Horizontal Axis Wind Turbine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1