为完善太阳系万有引力定律而进行的可重复太空实验的建议和论证

IF 1.2 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Gravitation and Cosmology Pub Date : 2024-05-21 DOI:10.1134/S0202289324700014
A. P. Yefremov, A. A. Vorobyeva
{"title":"为完善太阳系万有引力定律而进行的可重复太空实验的建议和论证","authors":"A. P. Yefremov,&nbsp;A. A. Vorobyeva","doi":"10.1134/S0202289324700014","DOIUrl":null,"url":null,"abstract":"<p>Against the background of insufficient information on the law of gravity in near space, a justification is proposed for conducting a high-precision artificial experiment to determine the law of gravity dominating the Solar System. It is proposed to use the Sun–Earth–Venus system, space probes, and observers as a “gravitational space laboratory.” The scheme of a “standard ballistic flight” is defined as a complex trajectory of the probe, comprising the Earth-Venus path, accelerating gravitational maneuver at Venus, and the Venus–Earth orbit path. The data at the end point of the trajectory provide a conclusion on the format of the law of gravity of the Sun. The key instruments of the experiment, the gravity assist maneuver and the function of its sensitivity to changes in the probe–planet impact parameter, are described in detail. Schemes and results of an analytical calculation and numerical construction of the probe trajectory are given. It is shown that this experiment provides a margin for successful observation of the probe positions in classical and relativistic gravity, which makes it possible to distinguish the gravity type. At the evaluation level, the issues of economics of the experiment are touched upon, and the provision of observational statistics and the possibility of obtaining additional scientific and practically significant information are discussed.</p>","PeriodicalId":583,"journal":{"name":"Gravitation and Cosmology","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proposal and Substantiation of a Repeatable Space Experiment to Refine the Law of Gravity That Dominates the Solar System\",\"authors\":\"A. P. Yefremov,&nbsp;A. A. Vorobyeva\",\"doi\":\"10.1134/S0202289324700014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Against the background of insufficient information on the law of gravity in near space, a justification is proposed for conducting a high-precision artificial experiment to determine the law of gravity dominating the Solar System. It is proposed to use the Sun–Earth–Venus system, space probes, and observers as a “gravitational space laboratory.” The scheme of a “standard ballistic flight” is defined as a complex trajectory of the probe, comprising the Earth-Venus path, accelerating gravitational maneuver at Venus, and the Venus–Earth orbit path. The data at the end point of the trajectory provide a conclusion on the format of the law of gravity of the Sun. The key instruments of the experiment, the gravity assist maneuver and the function of its sensitivity to changes in the probe–planet impact parameter, are described in detail. Schemes and results of an analytical calculation and numerical construction of the probe trajectory are given. It is shown that this experiment provides a margin for successful observation of the probe positions in classical and relativistic gravity, which makes it possible to distinguish the gravity type. At the evaluation level, the issues of economics of the experiment are touched upon, and the provision of observational statistics and the possibility of obtaining additional scientific and practically significant information are discussed.</p>\",\"PeriodicalId\":583,\"journal\":{\"name\":\"Gravitation and Cosmology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gravitation and Cosmology\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0202289324700014\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gravitation and Cosmology","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S0202289324700014","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在关于近空间万有引力定律的信息不足的背景下,提出了进行高精度人工实验的理由,以确定主导太阳系的万有引力定律。建议利用太阳-地球-金星系统、空间探测器和观测器作为 "引力空间实验室"。标准弹道飞行 "方案被定义为探测器的复杂轨迹,包括地球-金星路径、金星加速引力机动和金星-地球轨道路径。轨迹终点的数据提供了太阳万有引力定律格式的结论。详细介绍了实验的关键仪器、重力辅助机动及其对探测器-行星撞击参数变化的敏感性功能。还给出了分析计算和数值构建探测器轨迹的方案和结果。结果表明,该实验为成功观测经典引力和相对论引力下的探测器位置提供了余量,从而有可能区分引力类型。在评估层面上,讨论了该实验的经济性问题,以及提供观测统计数据和获得更多具有科学和实际意义的信息的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Proposal and Substantiation of a Repeatable Space Experiment to Refine the Law of Gravity That Dominates the Solar System

Against the background of insufficient information on the law of gravity in near space, a justification is proposed for conducting a high-precision artificial experiment to determine the law of gravity dominating the Solar System. It is proposed to use the Sun–Earth–Venus system, space probes, and observers as a “gravitational space laboratory.” The scheme of a “standard ballistic flight” is defined as a complex trajectory of the probe, comprising the Earth-Venus path, accelerating gravitational maneuver at Venus, and the Venus–Earth orbit path. The data at the end point of the trajectory provide a conclusion on the format of the law of gravity of the Sun. The key instruments of the experiment, the gravity assist maneuver and the function of its sensitivity to changes in the probe–planet impact parameter, are described in detail. Schemes and results of an analytical calculation and numerical construction of the probe trajectory are given. It is shown that this experiment provides a margin for successful observation of the probe positions in classical and relativistic gravity, which makes it possible to distinguish the gravity type. At the evaluation level, the issues of economics of the experiment are touched upon, and the provision of observational statistics and the possibility of obtaining additional scientific and practically significant information are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gravitation and Cosmology
Gravitation and Cosmology ASTRONOMY & ASTROPHYSICS-
CiteScore
1.70
自引率
22.20%
发文量
31
审稿时长
>12 weeks
期刊介绍: Gravitation and Cosmology is a peer-reviewed periodical, dealing with the full range of topics of gravitational physics and relativistic cosmology and published under the auspices of the Russian Gravitation Society and Peoples’ Friendship University of Russia. The journal publishes research papers, review articles and brief communications on the following fields: theoretical (classical and quantum) gravitation; relativistic astrophysics and cosmology, exact solutions and modern mathematical methods in gravitation and cosmology, including Lie groups, geometry and topology; unification theories including gravitation; fundamental physical constants and their possible variations; fundamental gravity experiments on Earth and in space; related topics. It also publishes selected old papers which have not lost their topicality but were previously published only in Russian and were not available to the worldwide research community
期刊最新文献
Initial Data Problem for a Traversable Wormhole with Interacting Mouths Machian Effects Inside a Rotating Spherical Shell Riemann Solitons on Relativistic Space-Times Prediction of Super-Exponentially Accelerated Universe in a Friedmann–Lemaitre–Robertson–Walker Metric Quantum Gravitational Eigenstates in Navarro–Frenk–White Potentials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1