深度 LPPLS:预测自然、工程和金融系统中的时间临界点

Joshua Nielsen, Didier Sornette, M. Raissi
{"title":"深度 LPPLS:预测自然、工程和金融系统中的时间临界点","authors":"Joshua Nielsen, Didier Sornette, M. Raissi","doi":"10.2139/ssrn.4839066","DOIUrl":null,"url":null,"abstract":"The Log-Periodic Power Law Singularity (LPPLS) model offers a general framework for capturing dynamics and predicting transition points in diverse natural and social systems. In this work, we present two calibration techniques for the LPPLS model using deep learning. First, we introduce the Mono-LPPLS-NN (M-LNN) model; for any given empirical time series, a unique M-LNN model is trained and shown to outperform state-of-the-art techniques in estimating the nonlinear parameters $(t_c, m, \\omega)$ of the LPPLS model as evidenced by the comprehensive distribution of parameter errors. Second, we extend the M-LNN model to a more general model architecture, the Poly-LPPLS-NN (P-LNN), which is able to quickly estimate the nonlinear parameters of the LPPLS model for any given time-series of a fixed length, including previously unseen time-series during training. The Poly class of models train on many synthetic LPPLS time-series augmented with various noise structures in a supervised manner. Given enough training examples, the P-LNN models also outperform state-of-the-art techniques for estimating the parameters of the LPPLS model as evidenced by the comprehensive distribution of parameter errors. Additionally, this class of models is shown to substantially reduce the time to obtain parameter estimates. Finally, we present applications to the diagnostic and prediction of two financial bubble peaks (followed by their crash) and of a famous rockslide. These contributions provide a bridge between deep learning and the study of the prediction of transition times in complex time series.","PeriodicalId":507782,"journal":{"name":"SSRN Electronic Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep LPPLS: Forecasting of temporal critical points in natural, engineering and financial systems\",\"authors\":\"Joshua Nielsen, Didier Sornette, M. Raissi\",\"doi\":\"10.2139/ssrn.4839066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Log-Periodic Power Law Singularity (LPPLS) model offers a general framework for capturing dynamics and predicting transition points in diverse natural and social systems. In this work, we present two calibration techniques for the LPPLS model using deep learning. First, we introduce the Mono-LPPLS-NN (M-LNN) model; for any given empirical time series, a unique M-LNN model is trained and shown to outperform state-of-the-art techniques in estimating the nonlinear parameters $(t_c, m, \\\\omega)$ of the LPPLS model as evidenced by the comprehensive distribution of parameter errors. Second, we extend the M-LNN model to a more general model architecture, the Poly-LPPLS-NN (P-LNN), which is able to quickly estimate the nonlinear parameters of the LPPLS model for any given time-series of a fixed length, including previously unseen time-series during training. The Poly class of models train on many synthetic LPPLS time-series augmented with various noise structures in a supervised manner. Given enough training examples, the P-LNN models also outperform state-of-the-art techniques for estimating the parameters of the LPPLS model as evidenced by the comprehensive distribution of parameter errors. Additionally, this class of models is shown to substantially reduce the time to obtain parameter estimates. Finally, we present applications to the diagnostic and prediction of two financial bubble peaks (followed by their crash) and of a famous rockslide. These contributions provide a bridge between deep learning and the study of the prediction of transition times in complex time series.\",\"PeriodicalId\":507782,\"journal\":{\"name\":\"SSRN Electronic Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SSRN Electronic Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.4839066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SSRN Electronic Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.4839066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对数周期幂律奇点(LPPLS)模型为捕捉各种自然和社会系统的动态和预测过渡点提供了一个通用框架。在这项工作中,我们利用深度学习为 LPPLS 模型提出了两种校准技术。首先,我们引入了单LPPLS-NN(Mono-LPPLS-NN,M-LNN)模型;对于任何给定的经验时间序列,我们都会训练出一个唯一的M-LNN模型,并证明该模型在估计LPPLS模型的非线性参数$(t_c, m, \omega)$方面优于最先进的技术,参数误差的综合分布也证明了这一点。其次,我们将 M-LNN 模型扩展为一种更通用的模型架构,即 Poly-LPPLS-NN (P-LNN),它能够为任何给定长度的时间序列快速估计 LPPLS 模型的非线性参数,包括在训练期间以前未见过的时间序列。Poly 类模型以监督的方式对许多合成的 LPPLS 时间序列进行训练,并添加了各种噪声结构。如果有足够多的训练实例,P-LNN 模型在估计 LPPLS 模型参数方面也优于最先进的技术,参数误差的综合分布证明了这一点。此外,这类模型还能大大缩短获得参数估计的时间。最后,我们介绍了两个金融泡沫高峰(随后崩溃)和一个著名滑坡的诊断和预测应用。这些贡献为深度学习与复杂时间序列中过渡时间的预测研究之间架起了一座桥梁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep LPPLS: Forecasting of temporal critical points in natural, engineering and financial systems
The Log-Periodic Power Law Singularity (LPPLS) model offers a general framework for capturing dynamics and predicting transition points in diverse natural and social systems. In this work, we present two calibration techniques for the LPPLS model using deep learning. First, we introduce the Mono-LPPLS-NN (M-LNN) model; for any given empirical time series, a unique M-LNN model is trained and shown to outperform state-of-the-art techniques in estimating the nonlinear parameters $(t_c, m, \omega)$ of the LPPLS model as evidenced by the comprehensive distribution of parameter errors. Second, we extend the M-LNN model to a more general model architecture, the Poly-LPPLS-NN (P-LNN), which is able to quickly estimate the nonlinear parameters of the LPPLS model for any given time-series of a fixed length, including previously unseen time-series during training. The Poly class of models train on many synthetic LPPLS time-series augmented with various noise structures in a supervised manner. Given enough training examples, the P-LNN models also outperform state-of-the-art techniques for estimating the parameters of the LPPLS model as evidenced by the comprehensive distribution of parameter errors. Additionally, this class of models is shown to substantially reduce the time to obtain parameter estimates. Finally, we present applications to the diagnostic and prediction of two financial bubble peaks (followed by their crash) and of a famous rockslide. These contributions provide a bridge between deep learning and the study of the prediction of transition times in complex time series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multilingualism and International Mental Health Research – The Barriers for Non-native Speakers of English The Oxford Olympics Study 2024: Are Cost and Cost Overrun at the Games Coming Down? The Frontiers of Nullification and Anticommandeering: Federalism and Extrajudicial Constitutional Interpretation Wasserstein gradient flow for optimal probability measure decomposition Using Legitimacy Strategies to Secure Organisational Survival Over Time: The Case of EFRAG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1